Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the two different angle measures of Jacob's parallelogram-shaped tile, we start by using the given angle expressions:
1. One of the angles is [tex]\(6n - 70\)[/tex] degrees.
2. The opposite angle is [tex]\(2n + 10\)[/tex] degrees.
Since opposite angles in a parallelogram are equal, we can set the two expressions equal to each other and solve for [tex]\(n\)[/tex]:
[tex]\[ 6n - 70 = 2n + 10 \][/tex]
First, we need to isolate [tex]\(n\)[/tex] on one side of the equation. To do this, we subtract [tex]\(2n\)[/tex] from both sides:
[tex]\[ 6n - 2n - 70 = 10 \][/tex]
Simplify the equation:
[tex]\[ 4n - 70 = 10 \][/tex]
Next, we add 70 to both sides to isolate the term with [tex]\(n\)[/tex]:
[tex]\[ 4n = 80 \][/tex]
Now, we divide both sides by 4 to solve for [tex]\(n\)[/tex]:
[tex]\[ n = 20 \][/tex]
With [tex]\(n = 20\)[/tex], we substitute back into the expressions for the angles to find the specific measures:
For the first angle:
[tex]\[ 6n - 70 = 6(20) - 70 = 120 - 70 = 50^\circ \][/tex]
For the opposite angle:
[tex]\[ 2n + 10 = 2(20) + 10 = 40 + 10 = 50^\circ \][/tex]
Then, determine the measure of the other pair of angles in the parallelogram. Since the angles in any quadrilateral sum to [tex]\(360^\circ\)[/tex], and a parallelogram has two pairs of equal opposite angles, we calculate the remaining angles:
[tex]\[ 180^\circ - 50^\circ = 130^\circ \][/tex]
Thus, the two different angle measures of the parallelogram-shaped tile are:
[tex]\[ 50^\circ \text{ and } 130^\circ \][/tex]
Therefore, the correct choice is:
[tex]\[ \boxed{50^\circ \text{ and } 130^\circ} \][/tex]
1. One of the angles is [tex]\(6n - 70\)[/tex] degrees.
2. The opposite angle is [tex]\(2n + 10\)[/tex] degrees.
Since opposite angles in a parallelogram are equal, we can set the two expressions equal to each other and solve for [tex]\(n\)[/tex]:
[tex]\[ 6n - 70 = 2n + 10 \][/tex]
First, we need to isolate [tex]\(n\)[/tex] on one side of the equation. To do this, we subtract [tex]\(2n\)[/tex] from both sides:
[tex]\[ 6n - 2n - 70 = 10 \][/tex]
Simplify the equation:
[tex]\[ 4n - 70 = 10 \][/tex]
Next, we add 70 to both sides to isolate the term with [tex]\(n\)[/tex]:
[tex]\[ 4n = 80 \][/tex]
Now, we divide both sides by 4 to solve for [tex]\(n\)[/tex]:
[tex]\[ n = 20 \][/tex]
With [tex]\(n = 20\)[/tex], we substitute back into the expressions for the angles to find the specific measures:
For the first angle:
[tex]\[ 6n - 70 = 6(20) - 70 = 120 - 70 = 50^\circ \][/tex]
For the opposite angle:
[tex]\[ 2n + 10 = 2(20) + 10 = 40 + 10 = 50^\circ \][/tex]
Then, determine the measure of the other pair of angles in the parallelogram. Since the angles in any quadrilateral sum to [tex]\(360^\circ\)[/tex], and a parallelogram has two pairs of equal opposite angles, we calculate the remaining angles:
[tex]\[ 180^\circ - 50^\circ = 130^\circ \][/tex]
Thus, the two different angle measures of the parallelogram-shaped tile are:
[tex]\[ 50^\circ \text{ and } 130^\circ \][/tex]
Therefore, the correct choice is:
[tex]\[ \boxed{50^\circ \text{ and } 130^\circ} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.