Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Question 5 of 8

Consider the function
[tex]\[ y = \sqrt{3x - 9} \][/tex]

(a) Find the domain.

Domain: [tex]\( x \)[/tex] [tex]\( \square \)[/tex]

(b) Find the range.

Range: [tex]\( y \)[/tex] [tex]\( \square \)[/tex]

Hint:

Refer to the eTextbook and media for assistance.


Sagot :

To address the question related to the function [tex]\( y = \sqrt{3x - 9} \)[/tex], let's break it down into the two parts specified: finding the domain and the range of the function.

### Part (a): Finding the Domain
The domain of a function is the set of all possible input values (in this case, values of [tex]\( x \)[/tex]) that the function can accept without causing any mathematical errors, like division by zero or taking the square root of a negative number.

For the function [tex]\( y = \sqrt{3x - 9} \)[/tex]:
- The expression inside the square root, [tex]\( 3x - 9 \)[/tex], must be non-negative because the square root of a negative number is not defined in the set of real numbers.

#### Step-by-Step:
1. Set up the inequality to ensure the expression inside the square root is non-negative:
[tex]\[ 3x - 9 \geq 0 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x \geq 9 \][/tex]
[tex]\[ x \geq 3 \][/tex]

Therefore, the domain of the function [tex]\( y = \sqrt{3x - 9} \)[/tex] is:
[tex]\[ x \geq 3 \][/tex]

This means that the function is defined for all [tex]\( x \)[/tex] values starting from 3 and extending to infinity. In interval notation, this is written as:
[tex]\[ [3, \infty) \][/tex]

### Part (b): Finding the Range
The range of a function is the set of all possible output values (in this case values of [tex]\( y \)[/tex]) that the function can produce.

For the function [tex]\( y = \sqrt{3x - 9} \)[/tex]:
- We need to consider how [tex]\( y \)[/tex] behaves as [tex]\( x \)[/tex] varies within its domain.

#### Step-by-Step:
1. Since [tex]\( x \)[/tex] starts at 3 (the minimum value in the domain), substitute [tex]\( x = 3 \)[/tex] to find the minimum value of [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt{3(3) - 9} = \sqrt{9 - 9} = \sqrt{0} = 0 \][/tex]

2. As [tex]\( x \)[/tex] increases beyond 3, the term [tex]\( 3x - 9 \)[/tex] becomes positive and grows larger. The square root of a larger and larger positive number also results in larger values of [tex]\( y \)[/tex]. Thus, as [tex]\( x \)[/tex] approaches infinity, [tex]\( y \)[/tex] also approaches infinity.

Therefore, the range of the function [tex]\( y = \sqrt{3x - 9} \)[/tex] is:
[tex]\[ y \geq 0 \][/tex]

This means that the function can produce output values starting from 0 and extending to infinity. In interval notation, this is written as:
[tex]\[ [0, \infty) \][/tex]

### Summary
#### (a) Domain:
[tex]\[ x \geq 3 \quad \text{or} \quad [3, \infty) \][/tex]

#### (b) Range:
[tex]\[ y \geq 0 \quad \text{or} \quad [0, \infty) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.