Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\(\tan^2(\theta) = 1\)[/tex] on the interval [tex]\([0, \pi)\)[/tex], let's follow a step-by-step approach.
1. Understand the equation:
[tex]\[ \tan^2(\theta) = 1 \][/tex]
This implies:
[tex]\[ \tan(\theta) = \pm 1 \][/tex]
2. Find the angles where [tex]\(\tan(\theta) = 1\)[/tex]:
The tangent of an angle is [tex]\(1\)[/tex] at [tex]\(\theta\)[/tex] values of:
[tex]\[ \theta = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z} \][/tex]
Within the interval [tex]\([0, \pi)\)[/tex], the only solution is:
[tex]\[ \theta = \frac{\pi}{4} \][/tex]
3. Find the angles where [tex]\(\tan(\theta) = -1\)[/tex]:
The tangent of an angle is [tex]\(-1\)[/tex] at [tex]\(\theta\)[/tex] values of:
[tex]\[ \theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z} \][/tex]
Within the interval [tex]\([0, \pi)\)[/tex], the only solution is:
[tex]\[ \theta = \frac{3\pi}{4} \][/tex]
4. Summarize the solutions:
Within the given interval [tex]\([0, \pi)\)[/tex], the solutions to the equation [tex]\(\tan^2(\theta) = 1\)[/tex] are:
[tex]\[ \theta = \frac{\pi}{4}, \quad \theta = \frac{3\pi}{4} \][/tex]
Thus, the answers are:
[tex]\[ A = \frac{\pi}{4} \approx 0.7854 \][/tex]
[tex]\[ B = \frac{3\pi}{4} \approx 2.3562 \][/tex]
Therefore, the solutions are:
[tex]\[ A = 0.7853981633974483 \][/tex]
[tex]\[ B = 2.356194490192345 \][/tex]
[tex]\(\boxed{0.7853981633974483}\)[/tex]
[tex]\(\boxed{2.356194490192345}\)[/tex]
1. Understand the equation:
[tex]\[ \tan^2(\theta) = 1 \][/tex]
This implies:
[tex]\[ \tan(\theta) = \pm 1 \][/tex]
2. Find the angles where [tex]\(\tan(\theta) = 1\)[/tex]:
The tangent of an angle is [tex]\(1\)[/tex] at [tex]\(\theta\)[/tex] values of:
[tex]\[ \theta = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z} \][/tex]
Within the interval [tex]\([0, \pi)\)[/tex], the only solution is:
[tex]\[ \theta = \frac{\pi}{4} \][/tex]
3. Find the angles where [tex]\(\tan(\theta) = -1\)[/tex]:
The tangent of an angle is [tex]\(-1\)[/tex] at [tex]\(\theta\)[/tex] values of:
[tex]\[ \theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z} \][/tex]
Within the interval [tex]\([0, \pi)\)[/tex], the only solution is:
[tex]\[ \theta = \frac{3\pi}{4} \][/tex]
4. Summarize the solutions:
Within the given interval [tex]\([0, \pi)\)[/tex], the solutions to the equation [tex]\(\tan^2(\theta) = 1\)[/tex] are:
[tex]\[ \theta = \frac{\pi}{4}, \quad \theta = \frac{3\pi}{4} \][/tex]
Thus, the answers are:
[tex]\[ A = \frac{\pi}{4} \approx 0.7854 \][/tex]
[tex]\[ B = \frac{3\pi}{4} \approx 2.3562 \][/tex]
Therefore, the solutions are:
[tex]\[ A = 0.7853981633974483 \][/tex]
[tex]\[ B = 2.356194490192345 \][/tex]
[tex]\(\boxed{0.7853981633974483}\)[/tex]
[tex]\(\boxed{2.356194490192345}\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.