Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] satisfy the equation
[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b, \][/tex]
we first simplify the left-hand side of the equation.
1. Simplify the expression [tex]\((2xy)^4\)[/tex]:
[tex]\[ (2xy)^4 = (2xy)(2xy)(2xy)(2xy) = 2^4 x^4 y^4 = 16x^4 y^4. \][/tex]
2. Now, substitute this back into the fractional term on the left-hand side:
[tex]\[ \frac{(2xy)^4}{4xy} = \frac{16x^4 y^4}{4xy}. \][/tex]
3. Simplify the fraction by dividing the numerator and the denominator by [tex]\( 4xy \)[/tex]:
[tex]\[ \frac{16x^4 y^4}{4xy} = \frac{16x^4 y^4}{4xy} = 4 \cdot \frac{x^4 y^4}{xy} = 4 \cdot x^{4-1} y^{4-1} = 4 x^3 y^3. \][/tex]
So, the left-hand side simplifies to:
[tex]\[ 4 x^3 y^3. \][/tex]
Next, we compare the simplified left-hand side to the right-hand side of the original equation to find the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex].
Given:
[tex]\[ 4 x^3 y^3 = 4 x^a y^b. \][/tex]
For the equation to hold for all [tex]\( x \)[/tex] and [tex]\( y \)[/tex], the exponents on both sides must be equal:
[tex]\[ a = 3 \quad \text{and} \quad b = 3. \][/tex]
Therefore, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] that satisfy the equation are:
[tex]\[ \boxed{a = 3, b = 3}. \][/tex]
[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b, \][/tex]
we first simplify the left-hand side of the equation.
1. Simplify the expression [tex]\((2xy)^4\)[/tex]:
[tex]\[ (2xy)^4 = (2xy)(2xy)(2xy)(2xy) = 2^4 x^4 y^4 = 16x^4 y^4. \][/tex]
2. Now, substitute this back into the fractional term on the left-hand side:
[tex]\[ \frac{(2xy)^4}{4xy} = \frac{16x^4 y^4}{4xy}. \][/tex]
3. Simplify the fraction by dividing the numerator and the denominator by [tex]\( 4xy \)[/tex]:
[tex]\[ \frac{16x^4 y^4}{4xy} = \frac{16x^4 y^4}{4xy} = 4 \cdot \frac{x^4 y^4}{xy} = 4 \cdot x^{4-1} y^{4-1} = 4 x^3 y^3. \][/tex]
So, the left-hand side simplifies to:
[tex]\[ 4 x^3 y^3. \][/tex]
Next, we compare the simplified left-hand side to the right-hand side of the original equation to find the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex].
Given:
[tex]\[ 4 x^3 y^3 = 4 x^a y^b. \][/tex]
For the equation to hold for all [tex]\( x \)[/tex] and [tex]\( y \)[/tex], the exponents on both sides must be equal:
[tex]\[ a = 3 \quad \text{and} \quad b = 3. \][/tex]
Therefore, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] that satisfy the equation are:
[tex]\[ \boxed{a = 3, b = 3}. \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.