Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve the problem step-by-step:
1. Given Information:
- Jorden drives to the store at 30 miles per hour.
- On her way home, she averages only 20 miles per hour.
- The total driving time is half an hour (0.5 hours).
2. Unknown:
- Distance to the store (and back) which we'll denote as [tex]\( d \)[/tex].
3. Relationships and Formulas:
- Time to store [tex]\( t_1 \)[/tex] and time back home [tex]\( t_2 \)[/tex].
- Using the relationship: [tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Rate}}. \][/tex]
4. Step-by-Step Solution:
- Let the distance to the store be [tex]\( d \)[/tex] miles.
- Time to drive to the store: [tex]\( t_1 = \frac{d}{30} \)[/tex] hours.
- Time to drive back home: [tex]\( t_2 = \frac{d}{20} \)[/tex] hours.
- Total driving time is given as 0.5 hours.
5. Set up the equation:
- The total time to and from the store: [tex]\[ t_1 + t_2 = 0.5. \][/tex]
- Substituting the expressions for [tex]\( t_1 \)[/tex] and [tex]\( t_2 \)[/tex] we get: [tex]\[ \frac{d}{30} + \frac{d}{20} = 0.5. \][/tex]
6. Solve the equation:
- To solve the equation, find a common denominator for the fractions. The common denominator of 30 and 20 is 60.
- Rewrite the equation: [tex]\[ \frac{2d}{60} + \frac{3d}{60} = 0.5. \][/tex]
- Combine the fractions: [tex]\[ \frac{2d + 3d}{60} = 0.5. \][/tex]
- Simplify: [tex]\[ \frac{5d}{60} = 0.5. \][/tex]
- Multiply both sides by 60 to clear the fraction: [tex]\[ 5d = 0.5 \times 60. \][/tex]
- Simplify: [tex]\[ 5d = 30. \][/tex]
- Solve for [tex]\( d \)[/tex]: [tex]\[ d = \frac{30}{5}. \][/tex]
- Hence, [tex]\( d = 6 \)[/tex] miles.
7. Conclusion:
- Jorden lives 6 miles from the store.
8. Filling the Table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \multicolumn{2}{|c}{Distance} & Rate & Time \\ \hline To store & 6 \text{ miles} & 30 \text{ miles per hour} & \frac{6}{30} = 0.2 \text{ hours} \\ \hline \begin{tabular}{c} Return home \end{tabular} & 6 \text{ miles} & 20 \text{ miles per hour} & \frac{6}{20} = 0.3 \text{ hours} \\ \hline \end{array} \][/tex]
Thus, the table is filled with the calculated distances, rates, and times.
1. Given Information:
- Jorden drives to the store at 30 miles per hour.
- On her way home, she averages only 20 miles per hour.
- The total driving time is half an hour (0.5 hours).
2. Unknown:
- Distance to the store (and back) which we'll denote as [tex]\( d \)[/tex].
3. Relationships and Formulas:
- Time to store [tex]\( t_1 \)[/tex] and time back home [tex]\( t_2 \)[/tex].
- Using the relationship: [tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Rate}}. \][/tex]
4. Step-by-Step Solution:
- Let the distance to the store be [tex]\( d \)[/tex] miles.
- Time to drive to the store: [tex]\( t_1 = \frac{d}{30} \)[/tex] hours.
- Time to drive back home: [tex]\( t_2 = \frac{d}{20} \)[/tex] hours.
- Total driving time is given as 0.5 hours.
5. Set up the equation:
- The total time to and from the store: [tex]\[ t_1 + t_2 = 0.5. \][/tex]
- Substituting the expressions for [tex]\( t_1 \)[/tex] and [tex]\( t_2 \)[/tex] we get: [tex]\[ \frac{d}{30} + \frac{d}{20} = 0.5. \][/tex]
6. Solve the equation:
- To solve the equation, find a common denominator for the fractions. The common denominator of 30 and 20 is 60.
- Rewrite the equation: [tex]\[ \frac{2d}{60} + \frac{3d}{60} = 0.5. \][/tex]
- Combine the fractions: [tex]\[ \frac{2d + 3d}{60} = 0.5. \][/tex]
- Simplify: [tex]\[ \frac{5d}{60} = 0.5. \][/tex]
- Multiply both sides by 60 to clear the fraction: [tex]\[ 5d = 0.5 \times 60. \][/tex]
- Simplify: [tex]\[ 5d = 30. \][/tex]
- Solve for [tex]\( d \)[/tex]: [tex]\[ d = \frac{30}{5}. \][/tex]
- Hence, [tex]\( d = 6 \)[/tex] miles.
7. Conclusion:
- Jorden lives 6 miles from the store.
8. Filling the Table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \multicolumn{2}{|c}{Distance} & Rate & Time \\ \hline To store & 6 \text{ miles} & 30 \text{ miles per hour} & \frac{6}{30} = 0.2 \text{ hours} \\ \hline \begin{tabular}{c} Return home \end{tabular} & 6 \text{ miles} & 20 \text{ miles per hour} & \frac{6}{20} = 0.3 \text{ hours} \\ \hline \end{array} \][/tex]
Thus, the table is filled with the calculated distances, rates, and times.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.