Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem, we need to determine the stationary distribution [tex]\( S \)[/tex] and then use [tex]\( S \)[/tex] to construct the limiting matrix [tex]\( \overline{P} \)[/tex]. Here's a step-by-step solution:
1. Understand the Stationary Distribution:
For the stationary distribution [tex]\( S \)[/tex] of a transition matrix [tex]\( P \)[/tex], we need:
[tex]\[ S \cdot P = S \][/tex]
Additionally, the elements of [tex]\( S \)[/tex] must sum to 1.
2. Set Up the Equations:
Let [tex]\( S = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \)[/tex]. The requirements are:
[tex]\[ \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \][/tex]
Which leads to the system of linear equations:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \\ s_1 + s_2 = 1 \end{cases} \][/tex]
3. Simplify the Equations:
Simplifying the first two equations, we get:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \end{cases} \][/tex]
This can be rearranged to:
[tex]\[ \begin{cases} -0.7s_1 + 0.3s_2 = 0 \\ 0.7s_1 - 0.3s_2 = 0 \end{cases} \][/tex]
4. Solve the System:
Since the equation system is dependent, we rely on the constraint [tex]\( s_1 + s_2 = 1 \)[/tex]. Solving one of the simplified equations:
[tex]\[ -0.7s_1 + 0.3s_2 = 0 \implies 0.3s_2 = 0.7s_1 \implies s_2 = \frac{7}{3} s_1 \][/tex]
Substituting into [tex]\( s_1 + s_2 = 1 \)[/tex]:
[tex]\[ s_1 + \frac{7}{3} s_1 = 1 \][/tex]
[tex]\[ \frac{10}{3}s_1 = 1 \implies s_1 = \frac{3}{10} = 0.3 \][/tex]
Thus,
[tex]\[ s_2 = 1 - s_1 = 1 - 0.3 = 0.7 \][/tex]
5. Stationary Distribution:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
6. Construct the Limiting Matrix:
The limiting matrix [tex]\( \overline{P} \)[/tex] has rows equal to the stationary distribution [tex]\( S \)[/tex]:
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
Hence, the stationary matrix [tex]\( S \)[/tex] and the limiting matrix [tex]\( \overline{P} \)[/tex] are:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
1. Understand the Stationary Distribution:
For the stationary distribution [tex]\( S \)[/tex] of a transition matrix [tex]\( P \)[/tex], we need:
[tex]\[ S \cdot P = S \][/tex]
Additionally, the elements of [tex]\( S \)[/tex] must sum to 1.
2. Set Up the Equations:
Let [tex]\( S = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \)[/tex]. The requirements are:
[tex]\[ \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \][/tex]
Which leads to the system of linear equations:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \\ s_1 + s_2 = 1 \end{cases} \][/tex]
3. Simplify the Equations:
Simplifying the first two equations, we get:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \end{cases} \][/tex]
This can be rearranged to:
[tex]\[ \begin{cases} -0.7s_1 + 0.3s_2 = 0 \\ 0.7s_1 - 0.3s_2 = 0 \end{cases} \][/tex]
4. Solve the System:
Since the equation system is dependent, we rely on the constraint [tex]\( s_1 + s_2 = 1 \)[/tex]. Solving one of the simplified equations:
[tex]\[ -0.7s_1 + 0.3s_2 = 0 \implies 0.3s_2 = 0.7s_1 \implies s_2 = \frac{7}{3} s_1 \][/tex]
Substituting into [tex]\( s_1 + s_2 = 1 \)[/tex]:
[tex]\[ s_1 + \frac{7}{3} s_1 = 1 \][/tex]
[tex]\[ \frac{10}{3}s_1 = 1 \implies s_1 = \frac{3}{10} = 0.3 \][/tex]
Thus,
[tex]\[ s_2 = 1 - s_1 = 1 - 0.3 = 0.7 \][/tex]
5. Stationary Distribution:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
6. Construct the Limiting Matrix:
The limiting matrix [tex]\( \overline{P} \)[/tex] has rows equal to the stationary distribution [tex]\( S \)[/tex]:
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
Hence, the stationary matrix [tex]\( S \)[/tex] and the limiting matrix [tex]\( \overline{P} \)[/tex] are:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.