At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem, we need to determine the stationary distribution [tex]\( S \)[/tex] and then use [tex]\( S \)[/tex] to construct the limiting matrix [tex]\( \overline{P} \)[/tex]. Here's a step-by-step solution:
1. Understand the Stationary Distribution:
For the stationary distribution [tex]\( S \)[/tex] of a transition matrix [tex]\( P \)[/tex], we need:
[tex]\[ S \cdot P = S \][/tex]
Additionally, the elements of [tex]\( S \)[/tex] must sum to 1.
2. Set Up the Equations:
Let [tex]\( S = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \)[/tex]. The requirements are:
[tex]\[ \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \][/tex]
Which leads to the system of linear equations:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \\ s_1 + s_2 = 1 \end{cases} \][/tex]
3. Simplify the Equations:
Simplifying the first two equations, we get:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \end{cases} \][/tex]
This can be rearranged to:
[tex]\[ \begin{cases} -0.7s_1 + 0.3s_2 = 0 \\ 0.7s_1 - 0.3s_2 = 0 \end{cases} \][/tex]
4. Solve the System:
Since the equation system is dependent, we rely on the constraint [tex]\( s_1 + s_2 = 1 \)[/tex]. Solving one of the simplified equations:
[tex]\[ -0.7s_1 + 0.3s_2 = 0 \implies 0.3s_2 = 0.7s_1 \implies s_2 = \frac{7}{3} s_1 \][/tex]
Substituting into [tex]\( s_1 + s_2 = 1 \)[/tex]:
[tex]\[ s_1 + \frac{7}{3} s_1 = 1 \][/tex]
[tex]\[ \frac{10}{3}s_1 = 1 \implies s_1 = \frac{3}{10} = 0.3 \][/tex]
Thus,
[tex]\[ s_2 = 1 - s_1 = 1 - 0.3 = 0.7 \][/tex]
5. Stationary Distribution:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
6. Construct the Limiting Matrix:
The limiting matrix [tex]\( \overline{P} \)[/tex] has rows equal to the stationary distribution [tex]\( S \)[/tex]:
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
Hence, the stationary matrix [tex]\( S \)[/tex] and the limiting matrix [tex]\( \overline{P} \)[/tex] are:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
1. Understand the Stationary Distribution:
For the stationary distribution [tex]\( S \)[/tex] of a transition matrix [tex]\( P \)[/tex], we need:
[tex]\[ S \cdot P = S \][/tex]
Additionally, the elements of [tex]\( S \)[/tex] must sum to 1.
2. Set Up the Equations:
Let [tex]\( S = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \)[/tex]. The requirements are:
[tex]\[ \begin{bmatrix} s_1 & s_2 \end{bmatrix} \cdot \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \][/tex]
Which leads to the system of linear equations:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \\ s_1 + s_2 = 1 \end{cases} \][/tex]
3. Simplify the Equations:
Simplifying the first two equations, we get:
[tex]\[ \begin{cases} 0.3s_1 + 0.3s_2 = s_1 \\ 0.7s_1 + 0.7s_2 = s_2 \end{cases} \][/tex]
This can be rearranged to:
[tex]\[ \begin{cases} -0.7s_1 + 0.3s_2 = 0 \\ 0.7s_1 - 0.3s_2 = 0 \end{cases} \][/tex]
4. Solve the System:
Since the equation system is dependent, we rely on the constraint [tex]\( s_1 + s_2 = 1 \)[/tex]. Solving one of the simplified equations:
[tex]\[ -0.7s_1 + 0.3s_2 = 0 \implies 0.3s_2 = 0.7s_1 \implies s_2 = \frac{7}{3} s_1 \][/tex]
Substituting into [tex]\( s_1 + s_2 = 1 \)[/tex]:
[tex]\[ s_1 + \frac{7}{3} s_1 = 1 \][/tex]
[tex]\[ \frac{10}{3}s_1 = 1 \implies s_1 = \frac{3}{10} = 0.3 \][/tex]
Thus,
[tex]\[ s_2 = 1 - s_1 = 1 - 0.3 = 0.7 \][/tex]
5. Stationary Distribution:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
6. Construct the Limiting Matrix:
The limiting matrix [tex]\( \overline{P} \)[/tex] has rows equal to the stationary distribution [tex]\( S \)[/tex]:
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
Hence, the stationary matrix [tex]\( S \)[/tex] and the limiting matrix [tex]\( \overline{P} \)[/tex] are:
[tex]\[ S = \begin{bmatrix} 0.3 & 0.7 \end{bmatrix} \][/tex]
[tex]\[ \overline{P} = \begin{bmatrix} 0.3 & 0.7 \\ 0.3 & 0.7 \end{bmatrix} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.