Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the quotient of [tex]\(\frac{1}{1 + \sqrt{3}}\)[/tex], we need to rationalize the denominator, a process that eliminates the square root from the denominator.
### Step 1: Rationalize the denominator
To rationalize the denominator of [tex]\(\frac{1}{1 + \sqrt{3}}\)[/tex], multiply both the numerator and the denominator by the conjugate of the denominator, [tex]\(1 - \sqrt{3}\)[/tex]. The conjugate is used because it can simplify the expressions involving square roots.
[tex]\[ \frac{1}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \frac{1 \cdot (1 - \sqrt{3})}{(1 + \sqrt{3}) \cdot (1 - \sqrt{3})} \][/tex]
### Step 2: Simplify the numerator
The numerator becomes:
[tex]\[ 1 \cdot (1 - \sqrt{3}) = 1 - \sqrt{3} \][/tex]
### Step 3: Simplify the denominator
Use the difference of squares formula for the denominator:
[tex]\[ (1 + \sqrt{3})(1 - \sqrt{3}) = 1^2 - (\sqrt{3})^2 = 1 - 3 = -2 \][/tex]
So, the expression becomes:
[tex]\[ \frac{1 - \sqrt{3}}{-2} \][/tex]
### Step 4: Remove the negative from the denominator
Simplify by changing the signs in the numerator:
[tex]\[ \frac{1 - \sqrt{3}}{-2} = \frac{-(1 - \sqrt{3})}{2} = \frac{-1 + \sqrt{3}}{2} \][/tex]
### Step 5: Compare to given choices
The answer matches one of the given choices. Among the choices given:
1. [tex]\(\frac{\sqrt{3}}{4}\)[/tex]
2. [tex]\(\frac{1 + \sqrt{3}}{4}\)[/tex]
3. [tex]\(\frac{1 - \sqrt{3}}{4}\)[/tex]
4. [tex]\(\frac{-1 + \sqrt{3}}{2}\)[/tex]
The correct choice is:
[tex]\[ \boxed{\frac{-1 + \sqrt{3}}{2}} \][/tex]
### Step 1: Rationalize the denominator
To rationalize the denominator of [tex]\(\frac{1}{1 + \sqrt{3}}\)[/tex], multiply both the numerator and the denominator by the conjugate of the denominator, [tex]\(1 - \sqrt{3}\)[/tex]. The conjugate is used because it can simplify the expressions involving square roots.
[tex]\[ \frac{1}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \frac{1 \cdot (1 - \sqrt{3})}{(1 + \sqrt{3}) \cdot (1 - \sqrt{3})} \][/tex]
### Step 2: Simplify the numerator
The numerator becomes:
[tex]\[ 1 \cdot (1 - \sqrt{3}) = 1 - \sqrt{3} \][/tex]
### Step 3: Simplify the denominator
Use the difference of squares formula for the denominator:
[tex]\[ (1 + \sqrt{3})(1 - \sqrt{3}) = 1^2 - (\sqrt{3})^2 = 1 - 3 = -2 \][/tex]
So, the expression becomes:
[tex]\[ \frac{1 - \sqrt{3}}{-2} \][/tex]
### Step 4: Remove the negative from the denominator
Simplify by changing the signs in the numerator:
[tex]\[ \frac{1 - \sqrt{3}}{-2} = \frac{-(1 - \sqrt{3})}{2} = \frac{-1 + \sqrt{3}}{2} \][/tex]
### Step 5: Compare to given choices
The answer matches one of the given choices. Among the choices given:
1. [tex]\(\frac{\sqrt{3}}{4}\)[/tex]
2. [tex]\(\frac{1 + \sqrt{3}}{4}\)[/tex]
3. [tex]\(\frac{1 - \sqrt{3}}{4}\)[/tex]
4. [tex]\(\frac{-1 + \sqrt{3}}{2}\)[/tex]
The correct choice is:
[tex]\[ \boxed{\frac{-1 + \sqrt{3}}{2}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.