Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Rewrite the expression to be easier to read and remove any unnecessary parts.

Given expression:
[tex]\[ 27x^3 - 9x^2 \][/tex]

Factor the expression completely.


Sagot :

Sure, let's go through the process of factoring the given expression step by step.

Given expression:
[tex]\[ 27x^3 - 9x^2 \][/tex]

### Step 1: Factor out the greatest common factor (GCF)
First, identify the greatest common factor of the terms in the expression. Both terms have a common factor of [tex]\( 9x^2 \)[/tex].

[tex]\[ 27x^3 - 9x^2 = 9x^2(3x^1) - 9x^2(1) \][/tex]

So, we can factor out [tex]\( 9x^2 \)[/tex] from each term:

[tex]\[ 9x^2(3x) - 9x^2(1) = 9x^2(3x - 1) \][/tex]

### Step 2: Simplify the expression
The expression is now factored completely as:

[tex]\[ 9x^2(3x - 1) \][/tex]

### Final Factored Form
Therefore, the completely factored form of the expression [tex]\( 27x^3 - 9x^2 \)[/tex] is:

[tex]\[ 9x^2(3x - 1) \][/tex]

This concludes the factorization process.