Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the factors of the polynomial [tex]\( x^3 - 1331 \)[/tex], we will follow these logical steps:
1. Step 1: Recognize the polynomial structure.
The given polynomial is [tex]\( x^3 - 1331 \)[/tex]. Notice that 1331 can be written as [tex]\(11^3\)[/tex]. Therefore, the polynomial can be expressed as:
[tex]\[ x^3 - 11^3 \][/tex]
2. Step 2: Identify the difference of cubes formula.
Next, we utilize the difference of cubes formula, which states:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
In our problem, [tex]\( a = x \)[/tex] and [tex]\( b = 11 \)[/tex].
3. Step 3: Apply the difference of cubes formula.
Substituting [tex]\( x \)[/tex] for [tex]\( a \)[/tex] and 11 for [tex]\( b \)[/tex] in the difference of cubes formula, we get:
[tex]\[ x^3 - 11^3 = (x - 11)(x^2 + 11x + 121) \][/tex]
4. Step 4: Identify the factors.
Therefore, the factors of the polynomial [tex]\( x^3 - 1331 \)[/tex] are:
[tex]\[ x - 11 \quad \text{and} \quad x^2 + 11x + 121 \][/tex]
5. Step 5: Answer the multiple-choice question.
Given that the problem is asking for a factor, we conclude that both [tex]\( x - 11 \)[/tex] and [tex]\( x^2 + 11x + 121 \)[/tex] are factors of the polynomial [tex]\( x^3 - 1331 \)[/tex].
Hence, the answer to the question "Which of the following is a factor of [tex]\( x^3 - 1331 \)[/tex]?" is:
[tex]\[ \boxed{x - 11 \quad \text{or} \quad x^2 + 11x + 121} \][/tex]
Depending on the particular choices presented in the multiple-choice question, you would select the one that matches one of these factors.
1. Step 1: Recognize the polynomial structure.
The given polynomial is [tex]\( x^3 - 1331 \)[/tex]. Notice that 1331 can be written as [tex]\(11^3\)[/tex]. Therefore, the polynomial can be expressed as:
[tex]\[ x^3 - 11^3 \][/tex]
2. Step 2: Identify the difference of cubes formula.
Next, we utilize the difference of cubes formula, which states:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
In our problem, [tex]\( a = x \)[/tex] and [tex]\( b = 11 \)[/tex].
3. Step 3: Apply the difference of cubes formula.
Substituting [tex]\( x \)[/tex] for [tex]\( a \)[/tex] and 11 for [tex]\( b \)[/tex] in the difference of cubes formula, we get:
[tex]\[ x^3 - 11^3 = (x - 11)(x^2 + 11x + 121) \][/tex]
4. Step 4: Identify the factors.
Therefore, the factors of the polynomial [tex]\( x^3 - 1331 \)[/tex] are:
[tex]\[ x - 11 \quad \text{and} \quad x^2 + 11x + 121 \][/tex]
5. Step 5: Answer the multiple-choice question.
Given that the problem is asking for a factor, we conclude that both [tex]\( x - 11 \)[/tex] and [tex]\( x^2 + 11x + 121 \)[/tex] are factors of the polynomial [tex]\( x^3 - 1331 \)[/tex].
Hence, the answer to the question "Which of the following is a factor of [tex]\( x^3 - 1331 \)[/tex]?" is:
[tex]\[ \boxed{x - 11 \quad \text{or} \quad x^2 + 11x + 121} \][/tex]
Depending on the particular choices presented in the multiple-choice question, you would select the one that matches one of these factors.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.