Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the slope and the [tex]$y$[/tex]-intercept for the line with the equation

[tex]2y + 5x = -7[/tex]

(A) [tex]m = 5, y[/tex]-intercept [tex]=(0, -7)[/tex]
(B) [tex]m = -\frac{5}{2}, y[/tex]-intercept [tex]=\left(0, -\frac{7}{2}\right)[/tex]
(C) [tex]m = -7, y[/tex]-intercept [tex]=(0, 5)[/tex]
(D) [tex]m = -\frac{7}{2}, y[/tex]-intercept [tex]=\left(0, -\frac{5}{2}\right)[/tex]


Sagot :

Let's analyze and convert the given line equation to the slope-intercept form, [tex]\( y = mx + b \)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.

The given equation is:
[tex]\[ 2y + 5x = -7 \][/tex]

First, isolate [tex]\(y\)[/tex] on one side of the equation. Begin by moving the [tex]\(5x\)[/tex] term to the right side:
[tex]\[ 2y = -5x - 7 \][/tex]

Next, divide every term by 2 to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \left(-\frac{5}{2}\right)x - \frac{7}{2} \][/tex]

Now the equation is in slope-intercept form [tex]\( y = mx + b \)[/tex], where the slope [tex]\(m\)[/tex] is the coefficient of [tex]\(x\)[/tex], and the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] is the constant term.

From this equation, we can see:
- The slope [tex]\(m\)[/tex] is [tex]\(-\frac{5}{2}\)[/tex].
- The [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] is [tex]\(-\frac{7}{2}\)[/tex].

Therefore, in coordinate form, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -\frac{7}{2})\)[/tex].

Given the options:
(A) [tex]\(m = 5\)[/tex], [tex]\(y\)[/tex]-intercept [tex]\((0, -7)\)[/tex]
(B) [tex]\(m = -\frac{5}{2}\)[/tex], [tex]\(y$-intercept $\left(0, -\frac{7}{2}\right)\)[/tex]
(C) [tex]\(m = -7\)[/tex], [tex]\(y\)[/tex]-intercept [tex]\((0, 5)\)[/tex]
(D) [tex]\(m = -\frac{7}{2}\)[/tex], [tex]\(y\)[/tex]-intercept [tex]\(\left(0, -\frac{5}{2}\right)\)[/tex]

The correct choice based on the calculated slope and [tex]\(y\)[/tex]-intercept is:
(B) [tex]\(m = -\frac{5}{2}\)[/tex], [tex]\(y$-intercept $\left(0, -\frac{7}{2}\right)\)[/tex]

Additionally, you can match these values with the given results:
- The slope is [tex]\(-2.5\)[/tex] (which is equivalent to [tex]\(-\frac{5}{2}\)[/tex]).
- The [tex]\(y$-intercept is \(-3.5\)[/tex] (which is equivalent to [tex]\(-\frac{7}{2}\)[/tex]).

Therefore, the correct answer based on the calculations is (B).