At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the slope of a line parallel to the line given by the equation [tex]\(5y + 7x = 12\)[/tex], we first need to rewrite the equation in slope-intercept form, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope.
Here are the steps to convert the equation [tex]\(5y + 7x = 12\)[/tex] into slope-intercept form:
1. Isolate [tex]\(y\)[/tex] on one side of the equation:
[tex]\[ 5y + 7x = 12 \][/tex]
Subtract [tex]\(7x\)[/tex] from both sides to get:
[tex]\[ 5y = -7x + 12 \][/tex]
2. Solve for [tex]\(y\)[/tex] by dividing every term by 5:
[tex]\[ y = \frac{-7}{5}x + \frac{12}{5} \][/tex]
In the equation [tex]\(y = \frac{-7}{5}x + \frac{12}{5}\)[/tex], the coefficient of [tex]\(x\)[/tex] is the slope.
3. Identify the slope:
The coefficient of [tex]\(x\)[/tex] here is [tex]\(\frac{-7}{5}\)[/tex].
Therefore, the slope of the line [tex]\(5y + 7x = 12\)[/tex] is [tex]\(-\frac{7}{5}\)[/tex].
4. Slope of the parallel line:
Since parallel lines have the same slope, any line that is parallel to the line [tex]\(5y + 7x = 12\)[/tex] will also have a slope of [tex]\(-\frac{7}{5}\)[/tex].
The answer is:
(B) [tex]\(m = -\frac{7}{5}\)[/tex].
Here are the steps to convert the equation [tex]\(5y + 7x = 12\)[/tex] into slope-intercept form:
1. Isolate [tex]\(y\)[/tex] on one side of the equation:
[tex]\[ 5y + 7x = 12 \][/tex]
Subtract [tex]\(7x\)[/tex] from both sides to get:
[tex]\[ 5y = -7x + 12 \][/tex]
2. Solve for [tex]\(y\)[/tex] by dividing every term by 5:
[tex]\[ y = \frac{-7}{5}x + \frac{12}{5} \][/tex]
In the equation [tex]\(y = \frac{-7}{5}x + \frac{12}{5}\)[/tex], the coefficient of [tex]\(x\)[/tex] is the slope.
3. Identify the slope:
The coefficient of [tex]\(x\)[/tex] here is [tex]\(\frac{-7}{5}\)[/tex].
Therefore, the slope of the line [tex]\(5y + 7x = 12\)[/tex] is [tex]\(-\frac{7}{5}\)[/tex].
4. Slope of the parallel line:
Since parallel lines have the same slope, any line that is parallel to the line [tex]\(5y + 7x = 12\)[/tex] will also have a slope of [tex]\(-\frac{7}{5}\)[/tex].
The answer is:
(B) [tex]\(m = -\frac{7}{5}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.