At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem for the function [tex]\( f(x) = \frac{1}{(x-4)^2} \)[/tex], we'll break it down step-by-step.
### 1. Domain
The domain of [tex]\( f(x) \)[/tex] consists of all the x-values for which the function is defined. Since [tex]\( f(x) \)[/tex] involves a denominator [tex]\((x-4)^2\)[/tex], the function becomes undefined when [tex]\( x = 4 \)[/tex]:
[tex]\[ \text{Domain: } (-\infty, 4) \cup (4, \infty) \][/tex]
### 2. x- and y-Intercepts
#### x-intercept:
To find the x-intercept, we set [tex]\( f(x) \)[/tex] to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = \frac{1}{(x-4)^2} \][/tex]
This equation has no solution because the numerator is always 1, and [tex]\((x-4)^2\)[/tex] is never zero. Therefore, there is no x-intercept.
#### y-intercept:
To find the y-intercept, we set [tex]\( x = 0 \)[/tex] in the function and solve for [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = \frac{1}{(0-4)^2} = \frac{1}{16} \][/tex]
So, the y-intercept is [tex]\( \left( 0, \frac{1}{16} \right) \)[/tex].
### 3. Vertical Asymptote
A vertical asymptote occurs where the function goes to infinity. This happens when the denominator equals zero. Hence, [tex]\( x = 4 \)[/tex] is a vertical asymptote.
### 4. Horizontal Asymptotes
To determine horizontal asymptotes, we look at the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{(x-4)^2} = 0 \][/tex]
[tex]\[ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{(x-4)^2} = 0 \][/tex]
So, the horizontal asymptote is:
[tex]\[ y = 0 \][/tex]
### 5. Oblique Asymptotes
Oblique asymptotes occur when the degree of the numerator is exactly one more than the degree of the denominator. In this case, the numerator is 1 (degree 0) and the denominator is [tex]\((x-4)^2\)[/tex] (degree 2), which means there is no oblique asymptote.
### 6. Graph
The correct graph of [tex]\( f(x) = \frac{1}{(x-4)^2} \)[/tex] should have:
- A vertical asymptote at [tex]\( x = 4 \)[/tex]
- A horizontal asymptote at [tex]\( y = 0 \)[/tex]
- No x-intercept
- A y-intercept at [tex]\( \left( 0, \frac{1}{16} \right) \)[/tex]
Given no graphs to choose from, I'll describe the general shape: The graph will have two branches, each approaching the vertical asymptote at [tex]\( x = 4 \)[/tex] as they go to infinity. Both branches will also approach the horizontal asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] goes to positive or negative infinity and will not cross the x-axis.
### Summary:
1. Domain: [tex]\( (-\infty, 4) \cup (4, \infty) \)[/tex]
2. x-intercept: None
3. y-intercept: [tex]\( \left( 0, \frac{1}{16} \right) \)[/tex]
4. Vertical Asymptote: [tex]\( x = 4 \)[/tex]
5. Horizontal Asymptote: [tex]\( y = 0 \)[/tex]
6. Oblique Asymptote: None
### 1. Domain
The domain of [tex]\( f(x) \)[/tex] consists of all the x-values for which the function is defined. Since [tex]\( f(x) \)[/tex] involves a denominator [tex]\((x-4)^2\)[/tex], the function becomes undefined when [tex]\( x = 4 \)[/tex]:
[tex]\[ \text{Domain: } (-\infty, 4) \cup (4, \infty) \][/tex]
### 2. x- and y-Intercepts
#### x-intercept:
To find the x-intercept, we set [tex]\( f(x) \)[/tex] to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = \frac{1}{(x-4)^2} \][/tex]
This equation has no solution because the numerator is always 1, and [tex]\((x-4)^2\)[/tex] is never zero. Therefore, there is no x-intercept.
#### y-intercept:
To find the y-intercept, we set [tex]\( x = 0 \)[/tex] in the function and solve for [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = \frac{1}{(0-4)^2} = \frac{1}{16} \][/tex]
So, the y-intercept is [tex]\( \left( 0, \frac{1}{16} \right) \)[/tex].
### 3. Vertical Asymptote
A vertical asymptote occurs where the function goes to infinity. This happens when the denominator equals zero. Hence, [tex]\( x = 4 \)[/tex] is a vertical asymptote.
### 4. Horizontal Asymptotes
To determine horizontal asymptotes, we look at the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{(x-4)^2} = 0 \][/tex]
[tex]\[ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{(x-4)^2} = 0 \][/tex]
So, the horizontal asymptote is:
[tex]\[ y = 0 \][/tex]
### 5. Oblique Asymptotes
Oblique asymptotes occur when the degree of the numerator is exactly one more than the degree of the denominator. In this case, the numerator is 1 (degree 0) and the denominator is [tex]\((x-4)^2\)[/tex] (degree 2), which means there is no oblique asymptote.
### 6. Graph
The correct graph of [tex]\( f(x) = \frac{1}{(x-4)^2} \)[/tex] should have:
- A vertical asymptote at [tex]\( x = 4 \)[/tex]
- A horizontal asymptote at [tex]\( y = 0 \)[/tex]
- No x-intercept
- A y-intercept at [tex]\( \left( 0, \frac{1}{16} \right) \)[/tex]
Given no graphs to choose from, I'll describe the general shape: The graph will have two branches, each approaching the vertical asymptote at [tex]\( x = 4 \)[/tex] as they go to infinity. Both branches will also approach the horizontal asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] goes to positive or negative infinity and will not cross the x-axis.
### Summary:
1. Domain: [tex]\( (-\infty, 4) \cup (4, \infty) \)[/tex]
2. x-intercept: None
3. y-intercept: [tex]\( \left( 0, \frac{1}{16} \right) \)[/tex]
4. Vertical Asymptote: [tex]\( x = 4 \)[/tex]
5. Horizontal Asymptote: [tex]\( y = 0 \)[/tex]
6. Oblique Asymptote: None
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.