At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! Let's go through the step-by-step solution to find the pH of a 0.0500 M solution of the diprotic weak acid [tex]\(H_2A\)[/tex] with [tex]\(K_{a1} = 3.5 \times 10^{-6}\)[/tex] and [tex]\(K_{a2} = 8.3 \times 10^{-9}\)[/tex].
### Step 1: First Dissociation Equilibrium
The first dissociation of [tex]\(H_2A\)[/tex] can be represented as:
[tex]\[ H_2A \rightleftharpoons H^+ + HA^- \][/tex]
The equilibrium constant expression (Ka1) for this dissociation is:
[tex]\[ K_{a1} = \frac{[H^+][HA^-]}{[H_2A]} \][/tex]
[tex]\[ 3.5 \times 10^{-6} = \frac{[H^+][HA^-]}{[0.0500 - [H^+]]} \][/tex]
Since [tex]\(H_2A\)[/tex] is a weak acid, we assume that [tex]\([H^+] \ll 0.0500\)[/tex]. So, [tex]\([0.0500 - [H^+]]\)[/tex] can be approximated as [tex]\(0.0500\)[/tex].
Rewriting the expression:
[tex]\[ 3.5 \times 10^{-6} = \frac{[H^+]^2}{0.0500} \][/tex]
[tex]\[ [H^+]^2 = 3.5 \times 10^{-6} \times 0.0500 \][/tex]
[tex]\[ [H^+]^2 = 1.75 \times 10^{-7} \][/tex]
[tex]\[ [H^+] = \sqrt{1.75 \times 10^{-7}} \][/tex]
[tex]\[ [H^+] = 1.32 \times 10^{-4} \][/tex]
This [tex]\( [H^+] \)[/tex] value is considered the initial hydrogen ion concentration from the first dissociation.
### Step 2: Second Dissociation Equilibrium
The second dissociation of [tex]\(HA^-\)[/tex] can be represented as:
[tex]\[ HA^- \rightleftharpoons H^+ + A^{2-} \][/tex]
The equilibrium constant expression (Ka2) for this dissociation is:
[tex]\[ K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]} \][/tex]
Using the concentration from the first equilibrium:
[tex]\[ 8.3 \times 10^{-9} = \frac{[H^+][A^{2-}]}{[HA^-]} \][/tex]
From the first dissociation, [tex]\([HA^-] \approx [H^+] = 1.32 \times 10^{-4} \)[/tex] and if we let [tex]\( [H^+] = y \)[/tex] for the second dissociation:
[tex]\[ [HA^-] \approx 1.32 \times 10^{-4} - y \][/tex]
Since [tex]\(K_{a2}\)[/tex] is quite small, we assume [tex]\( [HA^-] \approx 1.32 \times 10^{-4} \)[/tex].
Rewriting the expression:
[tex]\[ 8.3 \times 10^{-9} = \frac{y^2}{1.32 \times 10^{-4}} \][/tex]
[tex]\[ y^2 = 8.3 \times 10^{-9} \times 1.32 \times 10^{-4} \][/tex]
[tex]\[ y^2 = 1.096 \times 10^{-12} \][/tex]
[tex]\[ y = \sqrt{1.096 \times 10^{-12}} \][/tex]
[tex]\[ y = 1.05 \times 10^{-6} \][/tex]
### Step 3: Total [H^+] Concentration
The total [tex]\( [H^+] \)[/tex] concentration is the sum of [tex]\( [H^+] \)[/tex] from both dissociations:
[tex]\[ [H^+]_{total} = 1.32 \times 10^{-4} + 1.05 \times 10^{-6} \][/tex]
[tex]\[ [H^+]_{total} \approx 1.32 \times 10^{-4} \][/tex]
### Step 4: Calculate pH
Finally, calculate the pH:
[tex]\[ \text{pH} = -\log([H^+]_{total}) \][/tex]
[tex]\[ \text{pH} = -\log(1.32 \times 10^{-4}) \][/tex]
[tex]\[ \text{pH} \approx 3.88 \][/tex]
So, the pH of the 0.0500 M solution of [tex]\(H_2A\)[/tex] is approximately 3.88.
### Step 1: First Dissociation Equilibrium
The first dissociation of [tex]\(H_2A\)[/tex] can be represented as:
[tex]\[ H_2A \rightleftharpoons H^+ + HA^- \][/tex]
The equilibrium constant expression (Ka1) for this dissociation is:
[tex]\[ K_{a1} = \frac{[H^+][HA^-]}{[H_2A]} \][/tex]
[tex]\[ 3.5 \times 10^{-6} = \frac{[H^+][HA^-]}{[0.0500 - [H^+]]} \][/tex]
Since [tex]\(H_2A\)[/tex] is a weak acid, we assume that [tex]\([H^+] \ll 0.0500\)[/tex]. So, [tex]\([0.0500 - [H^+]]\)[/tex] can be approximated as [tex]\(0.0500\)[/tex].
Rewriting the expression:
[tex]\[ 3.5 \times 10^{-6} = \frac{[H^+]^2}{0.0500} \][/tex]
[tex]\[ [H^+]^2 = 3.5 \times 10^{-6} \times 0.0500 \][/tex]
[tex]\[ [H^+]^2 = 1.75 \times 10^{-7} \][/tex]
[tex]\[ [H^+] = \sqrt{1.75 \times 10^{-7}} \][/tex]
[tex]\[ [H^+] = 1.32 \times 10^{-4} \][/tex]
This [tex]\( [H^+] \)[/tex] value is considered the initial hydrogen ion concentration from the first dissociation.
### Step 2: Second Dissociation Equilibrium
The second dissociation of [tex]\(HA^-\)[/tex] can be represented as:
[tex]\[ HA^- \rightleftharpoons H^+ + A^{2-} \][/tex]
The equilibrium constant expression (Ka2) for this dissociation is:
[tex]\[ K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]} \][/tex]
Using the concentration from the first equilibrium:
[tex]\[ 8.3 \times 10^{-9} = \frac{[H^+][A^{2-}]}{[HA^-]} \][/tex]
From the first dissociation, [tex]\([HA^-] \approx [H^+] = 1.32 \times 10^{-4} \)[/tex] and if we let [tex]\( [H^+] = y \)[/tex] for the second dissociation:
[tex]\[ [HA^-] \approx 1.32 \times 10^{-4} - y \][/tex]
Since [tex]\(K_{a2}\)[/tex] is quite small, we assume [tex]\( [HA^-] \approx 1.32 \times 10^{-4} \)[/tex].
Rewriting the expression:
[tex]\[ 8.3 \times 10^{-9} = \frac{y^2}{1.32 \times 10^{-4}} \][/tex]
[tex]\[ y^2 = 8.3 \times 10^{-9} \times 1.32 \times 10^{-4} \][/tex]
[tex]\[ y^2 = 1.096 \times 10^{-12} \][/tex]
[tex]\[ y = \sqrt{1.096 \times 10^{-12}} \][/tex]
[tex]\[ y = 1.05 \times 10^{-6} \][/tex]
### Step 3: Total [H^+] Concentration
The total [tex]\( [H^+] \)[/tex] concentration is the sum of [tex]\( [H^+] \)[/tex] from both dissociations:
[tex]\[ [H^+]_{total} = 1.32 \times 10^{-4} + 1.05 \times 10^{-6} \][/tex]
[tex]\[ [H^+]_{total} \approx 1.32 \times 10^{-4} \][/tex]
### Step 4: Calculate pH
Finally, calculate the pH:
[tex]\[ \text{pH} = -\log([H^+]_{total}) \][/tex]
[tex]\[ \text{pH} = -\log(1.32 \times 10^{-4}) \][/tex]
[tex]\[ \text{pH} \approx 3.88 \][/tex]
So, the pH of the 0.0500 M solution of [tex]\(H_2A\)[/tex] is approximately 3.88.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.