Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Determine the multiplicity of the roots of the function [tex]k(x) = x(x+2)^3(x+4)^2(x-5)^4[/tex].

- [tex]\(0\)[/tex] has multiplicity [tex]\(\quad\)[/tex]
- [tex]\(-2\)[/tex] has multiplicity [tex]\(\quad\)[/tex]
- [tex]\(-4\)[/tex] has multiplicity [tex]\(\quad\)[/tex]
- [tex]\(5\)[/tex] has multiplicity [tex]\(\quad\)[/tex]


Sagot :

To determine the multiplicity of the roots of the function [tex]\( k(x) = x(x+2)^3(x+4)^2(x-5)^4 \)[/tex], we need to look at the exponents of the factors in the function. Here’s a step-by-step explanation:

1. Identifying Factors and Their Exponents:
- The function [tex]\( k(x) \)[/tex] has factors [tex]\( x \)[/tex], [tex]\( (x+2)^3 \)[/tex], [tex]\( (x+4)^2 \)[/tex], and [tex]\( (x-5)^4 \)[/tex].
- The exponent of each factor indicates the multiplicity of the corresponding root.

2. Determining Roots and Their Multiplicities:
- [tex]\( x = 0 \)[/tex]: The factor [tex]\( x \)[/tex] appears with an exponent of 1. Therefore, the multiplicity of the root [tex]\( 0 \)[/tex] is 1.
- [tex]\( x = -2 \)[/tex]: The factor [tex]\( (x+2) \)[/tex] appears with an exponent of 3. Therefore, the multiplicity of the root [tex]\( -2 \)[/tex] is 3.
- [tex]\( x = -4 \)[/tex]: The factor [tex]\( (x+4) \)[/tex] appears with an exponent of 2. Therefore, the multiplicity of the root [tex]\( -4 \)[/tex] is 2.
- [tex]\( x = 5 \)[/tex]: The factor [tex]\( (x-5) \)[/tex] appears with an exponent of 4. Therefore, the multiplicity of the root [tex]\( 5 \)[/tex] is 4.

3. Final Answer:
- [tex]\( 0 \)[/tex] has multiplicity [tex]\( 1 \)[/tex].
- [tex]\( -2 \)[/tex] has multiplicity [tex]\( 3 \)[/tex].
- [tex]\( -4 \)[/tex] has multiplicity [tex]\( 2 \)[/tex].
- [tex]\( 5 \)[/tex] has multiplicity [tex]\( 4 \)[/tex].

Thus, the multiplicities of the roots are:
- [tex]\( 0 \)[/tex] has multiplicity [tex]\( 1 \)[/tex].
- [tex]\( -2 \)[/tex] has multiplicity [tex]\( 3 \)[/tex].
- [tex]\( -4 \)[/tex] has multiplicity [tex]\( 2 \)[/tex].
- [tex]\( 5 \)[/tex] has multiplicity [tex]\( 4 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.