Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem of finding the final position of a point after it undergoes two translations, let’s follow a step-by-step process.
1. Identify the initial position of the point:
- The point starts at the position [tex]\((-3, 1)\)[/tex].
2. Apply the first translation:
- The first translation vector is [tex]\(\langle 8, -4 \rangle\)[/tex].
- To apply this translation, add the components of the vector to the initial coordinates of the point.
- For the [tex]\(x\)[/tex]-coordinate: [tex]\(-3 + 8 = 5\)[/tex]
- For the [tex]\(y\)[/tex]-coordinate: [tex]\(1 - 4 = -3\)[/tex]
- After the first translation, the position of the point is [tex]\((5, -3)\)[/tex].
3. Apply the second translation:
- The second translation vector is [tex]\(\langle -2, -2 \rangle\)[/tex].
- To apply this translation, add the components of the vector to the new position of the point.
- For the [tex]\(x\)[/tex]-coordinate: [tex]\(5 - 2 = 3\)[/tex]
- For the [tex]\(y\)[/tex]-coordinate: [tex]\(-3 - 2 = -5\)[/tex]
- After the second translation, the position of the point is [tex]\((3, -5)\)[/tex].
4. Final result:
- The ordered pair for the point’s final position is [tex]\((3, -5)\)[/tex].
So, after undergoing the translations [tex]\(T_{\langle 8,-4\rangle} \text { and } T_{\langle -2,-2\rangle}\)[/tex], the final position of the point, initially at [tex]\((-3, 1)\)[/tex], is [tex]\((3, -5)\)[/tex].
1. Identify the initial position of the point:
- The point starts at the position [tex]\((-3, 1)\)[/tex].
2. Apply the first translation:
- The first translation vector is [tex]\(\langle 8, -4 \rangle\)[/tex].
- To apply this translation, add the components of the vector to the initial coordinates of the point.
- For the [tex]\(x\)[/tex]-coordinate: [tex]\(-3 + 8 = 5\)[/tex]
- For the [tex]\(y\)[/tex]-coordinate: [tex]\(1 - 4 = -3\)[/tex]
- After the first translation, the position of the point is [tex]\((5, -3)\)[/tex].
3. Apply the second translation:
- The second translation vector is [tex]\(\langle -2, -2 \rangle\)[/tex].
- To apply this translation, add the components of the vector to the new position of the point.
- For the [tex]\(x\)[/tex]-coordinate: [tex]\(5 - 2 = 3\)[/tex]
- For the [tex]\(y\)[/tex]-coordinate: [tex]\(-3 - 2 = -5\)[/tex]
- After the second translation, the position of the point is [tex]\((3, -5)\)[/tex].
4. Final result:
- The ordered pair for the point’s final position is [tex]\((3, -5)\)[/tex].
So, after undergoing the translations [tex]\(T_{\langle 8,-4\rangle} \text { and } T_{\langle -2,-2\rangle}\)[/tex], the final position of the point, initially at [tex]\((-3, 1)\)[/tex], is [tex]\((3, -5)\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.