Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which equation represents a line that passes through the point [tex]\((5, 1)\)[/tex] with a slope of [tex]\(\frac{1}{2}\)[/tex], we can start by using the point-slope form of a linear equation, which is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Given:
- Point: [tex]\((5, 1)\)[/tex]
- Slope: [tex]\(\frac{1}{2}\)[/tex]
We can plug these values into the point-slope form equation:
[tex]\[ y - 1 = \frac{1}{2}(x - 5) \][/tex]
Now we compare this with the given equations:
1. [tex]\( y - 5 = \frac{1}{2}(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 5 = \frac{1}{2}(x - 1) \][/tex]
[tex]\[ y - 5 = \frac{1}{2}x - \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{1}{2} + 5 \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
2. [tex]\( y - \frac{1}{2} = 5(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - \frac{1}{2} = 5(x - 1) \][/tex]
[tex]\[ y - \frac{1}{2} = 5x - 5 \][/tex]
[tex]\[ y = 5x - 5 + \frac{1}{2} \][/tex]
[tex]\[ y = 5x - \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
3. [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex]
- This is exactly the same as our derived equation.
- Therefore, this is the correct equation.
4. [tex]\( y - 1 = 5\left(x - \frac{1}{2}\right) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 1 = 5\left(x - \frac{1}{2}\right) \][/tex]
[tex]\[ y - 1 = 5x - \frac{5}{2} \][/tex]
[tex]\[ y = 5x - \frac{5}{2} + 1 \][/tex]
[tex]\[ y = 5x - \frac{3}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
Therefore, the correct equation that represents a line passing through [tex]\((5, 1)\)[/tex] with a slope of [tex]\(\frac{1}{2}\)[/tex] is:
[tex]\[ \boxed{y - 1 = \frac{1}{2}(x - 5)} \][/tex]
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Given:
- Point: [tex]\((5, 1)\)[/tex]
- Slope: [tex]\(\frac{1}{2}\)[/tex]
We can plug these values into the point-slope form equation:
[tex]\[ y - 1 = \frac{1}{2}(x - 5) \][/tex]
Now we compare this with the given equations:
1. [tex]\( y - 5 = \frac{1}{2}(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 5 = \frac{1}{2}(x - 1) \][/tex]
[tex]\[ y - 5 = \frac{1}{2}x - \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{1}{2} + 5 \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
2. [tex]\( y - \frac{1}{2} = 5(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - \frac{1}{2} = 5(x - 1) \][/tex]
[tex]\[ y - \frac{1}{2} = 5x - 5 \][/tex]
[tex]\[ y = 5x - 5 + \frac{1}{2} \][/tex]
[tex]\[ y = 5x - \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
3. [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex]
- This is exactly the same as our derived equation.
- Therefore, this is the correct equation.
4. [tex]\( y - 1 = 5\left(x - \frac{1}{2}\right) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 1 = 5\left(x - \frac{1}{2}\right) \][/tex]
[tex]\[ y - 1 = 5x - \frac{5}{2} \][/tex]
[tex]\[ y = 5x - \frac{5}{2} + 1 \][/tex]
[tex]\[ y = 5x - \frac{3}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
Therefore, the correct equation that represents a line passing through [tex]\((5, 1)\)[/tex] with a slope of [tex]\(\frac{1}{2}\)[/tex] is:
[tex]\[ \boxed{y - 1 = \frac{1}{2}(x - 5)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.