Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equation represents a line that passes through the point [tex]\((5, 1)\)[/tex] with a slope of [tex]\(\frac{1}{2}\)[/tex], we can start by using the point-slope form of a linear equation, which is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Given:
- Point: [tex]\((5, 1)\)[/tex]
- Slope: [tex]\(\frac{1}{2}\)[/tex]
We can plug these values into the point-slope form equation:
[tex]\[ y - 1 = \frac{1}{2}(x - 5) \][/tex]
Now we compare this with the given equations:
1. [tex]\( y - 5 = \frac{1}{2}(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 5 = \frac{1}{2}(x - 1) \][/tex]
[tex]\[ y - 5 = \frac{1}{2}x - \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{1}{2} + 5 \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
2. [tex]\( y - \frac{1}{2} = 5(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - \frac{1}{2} = 5(x - 1) \][/tex]
[tex]\[ y - \frac{1}{2} = 5x - 5 \][/tex]
[tex]\[ y = 5x - 5 + \frac{1}{2} \][/tex]
[tex]\[ y = 5x - \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
3. [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex]
- This is exactly the same as our derived equation.
- Therefore, this is the correct equation.
4. [tex]\( y - 1 = 5\left(x - \frac{1}{2}\right) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 1 = 5\left(x - \frac{1}{2}\right) \][/tex]
[tex]\[ y - 1 = 5x - \frac{5}{2} \][/tex]
[tex]\[ y = 5x - \frac{5}{2} + 1 \][/tex]
[tex]\[ y = 5x - \frac{3}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
Therefore, the correct equation that represents a line passing through [tex]\((5, 1)\)[/tex] with a slope of [tex]\(\frac{1}{2}\)[/tex] is:
[tex]\[ \boxed{y - 1 = \frac{1}{2}(x - 5)} \][/tex]
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Given:
- Point: [tex]\((5, 1)\)[/tex]
- Slope: [tex]\(\frac{1}{2}\)[/tex]
We can plug these values into the point-slope form equation:
[tex]\[ y - 1 = \frac{1}{2}(x - 5) \][/tex]
Now we compare this with the given equations:
1. [tex]\( y - 5 = \frac{1}{2}(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 5 = \frac{1}{2}(x - 1) \][/tex]
[tex]\[ y - 5 = \frac{1}{2}x - \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{1}{2} + 5 \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
2. [tex]\( y - \frac{1}{2} = 5(x - 1) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - \frac{1}{2} = 5(x - 1) \][/tex]
[tex]\[ y - \frac{1}{2} = 5x - 5 \][/tex]
[tex]\[ y = 5x - 5 + \frac{1}{2} \][/tex]
[tex]\[ y = 5x - \frac{9}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
3. [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex]
- This is exactly the same as our derived equation.
- Therefore, this is the correct equation.
4. [tex]\( y - 1 = 5\left(x - \frac{1}{2}\right) \)[/tex]
- Rewriting this in slope-intercept form:
[tex]\[ y - 1 = 5\left(x - \frac{1}{2}\right) \][/tex]
[tex]\[ y - 1 = 5x - \frac{5}{2} \][/tex]
[tex]\[ y = 5x - \frac{5}{2} + 1 \][/tex]
[tex]\[ y = 5x - \frac{3}{2} \][/tex]
- This does not match the derived equation [tex]\( y - 1 = \frac{1}{2}(x - 5) \)[/tex].
Therefore, the correct equation that represents a line passing through [tex]\((5, 1)\)[/tex] with a slope of [tex]\(\frac{1}{2}\)[/tex] is:
[tex]\[ \boxed{y - 1 = \frac{1}{2}(x - 5)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.