Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Talia's method involves four steps to write the equation of the graphed line in point-slope form, using points [tex]\((2,5)\)[/tex] and [tex]\((1,3)\)[/tex]. Let's review each step and identify any mistakes.
### Step-by-Step Analysis:
1. Step 1: Choose a point on the line, such as [tex]\((2,5)\)[/tex].
2. Step 2: Choose another point on the line, such as [tex]\((1,3)\)[/tex].
3. Step 3: Count units to determine the slope ratio. The line runs 1 unit to the right and rises 2 units up, so the slope is [tex]\(\frac{2}{1}\)[/tex].
- Here, Talia states that the slope is determined by counting the units the line moves horizontally and vertically.
- Correction: The actual change between points [tex]\((1, 3)\)[/tex] and [tex]\((2, 5)\)[/tex] is a run of 1 unit to the right and a rise of 2 units up. This results in a slope of [tex]\(\frac{\Delta y}{\Delta x} = \frac{5 - 3}{2 - 1} = \frac{2}{1} = 2\)[/tex].
4. Step 4: Substitute those values into the point-slope form.
[tex]\[ \begin{array}{l} y - y_1 = m\left(x - x_1\right) \\ y - 3 = 2(x - 1) \end{array} \][/tex]
- At this stage, Talia uses one of the chosen points [tex]\((1, 3)\)[/tex] and the slope [tex]\(2\)[/tex].
### Conclusion:
- Step 3: There was an error in determining the slope. The correct slope should be 2, not [tex]\(\frac{1}{2}\)[/tex], based on the change in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between [tex]\((2,5)\)[/tex] and [tex]\((1,3)\)[/tex].
Therefore, the incorrect part of Talia's steps is in Step 3, where she incorrectly calculates the slope. The correct slope, based on the points she chose, is 2, not [tex]\(\frac{1}{2}\)[/tex].
The corrected substitution should be:
[tex]\[ y - 3 = 2(x - 1). \][/tex]
### Step-by-Step Analysis:
1. Step 1: Choose a point on the line, such as [tex]\((2,5)\)[/tex].
2. Step 2: Choose another point on the line, such as [tex]\((1,3)\)[/tex].
3. Step 3: Count units to determine the slope ratio. The line runs 1 unit to the right and rises 2 units up, so the slope is [tex]\(\frac{2}{1}\)[/tex].
- Here, Talia states that the slope is determined by counting the units the line moves horizontally and vertically.
- Correction: The actual change between points [tex]\((1, 3)\)[/tex] and [tex]\((2, 5)\)[/tex] is a run of 1 unit to the right and a rise of 2 units up. This results in a slope of [tex]\(\frac{\Delta y}{\Delta x} = \frac{5 - 3}{2 - 1} = \frac{2}{1} = 2\)[/tex].
4. Step 4: Substitute those values into the point-slope form.
[tex]\[ \begin{array}{l} y - y_1 = m\left(x - x_1\right) \\ y - 3 = 2(x - 1) \end{array} \][/tex]
- At this stage, Talia uses one of the chosen points [tex]\((1, 3)\)[/tex] and the slope [tex]\(2\)[/tex].
### Conclusion:
- Step 3: There was an error in determining the slope. The correct slope should be 2, not [tex]\(\frac{1}{2}\)[/tex], based on the change in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between [tex]\((2,5)\)[/tex] and [tex]\((1,3)\)[/tex].
Therefore, the incorrect part of Talia's steps is in Step 3, where she incorrectly calculates the slope. The correct slope, based on the points she chose, is 2, not [tex]\(\frac{1}{2}\)[/tex].
The corrected substitution should be:
[tex]\[ y - 3 = 2(x - 1). \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.