Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the slope of the line given the equation [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex], let's analyze the equation step by step.
1. Identify the form of the equation:
The given equation [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex] is in the point-slope form, which is written as:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] represents the slope of the line, and [tex]\( (x_1, y_1) \)[/tex] is a point on the line.
2. Compare the given equation to the point-slope form:
Let's rewrite the provided equation:
[tex]\[ y - 4 = \frac{5}{2}(x - 2) \][/tex]
By comparing this to the general point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], we can deduce the following:
- [tex]\( y_1 = 4 \)[/tex]
- [tex]\( x_1 = 2 \)[/tex]
- [tex]\( m = \frac{5}{2} \)[/tex]
3. The value of [tex]\( m \)[/tex] is the slope of the line. Therefore, from the equation [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex], we see that the slope [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{5}{2} \][/tex]
4. Simplify the slope if necessary:
Often, slopes are presented in decimal form as well. So, converting [tex]\( \frac{5}{2} \)[/tex] to a decimal gives:
[tex]\[ \frac{5}{2} = 2.5 \][/tex]
Thus, the slope of the line whose equation is [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex] is [tex]\( 2.5 \)[/tex].
1. Identify the form of the equation:
The given equation [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex] is in the point-slope form, which is written as:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\( m \)[/tex] represents the slope of the line, and [tex]\( (x_1, y_1) \)[/tex] is a point on the line.
2. Compare the given equation to the point-slope form:
Let's rewrite the provided equation:
[tex]\[ y - 4 = \frac{5}{2}(x - 2) \][/tex]
By comparing this to the general point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], we can deduce the following:
- [tex]\( y_1 = 4 \)[/tex]
- [tex]\( x_1 = 2 \)[/tex]
- [tex]\( m = \frac{5}{2} \)[/tex]
3. The value of [tex]\( m \)[/tex] is the slope of the line. Therefore, from the equation [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex], we see that the slope [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{5}{2} \][/tex]
4. Simplify the slope if necessary:
Often, slopes are presented in decimal form as well. So, converting [tex]\( \frac{5}{2} \)[/tex] to a decimal gives:
[tex]\[ \frac{5}{2} = 2.5 \][/tex]
Thus, the slope of the line whose equation is [tex]\( y - 4 = \frac{5}{2}(x - 2) \)[/tex] is [tex]\( 2.5 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.