Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the relationship between petal length and petal width for the iris setosa species, we use linear regression, which gives us the equation of a line that best fits the data points. The equation of a line in the context of linear regression is generally written as:
[tex]\[ \hat{y} = mx + b \][/tex]
where:
- [tex]\( \hat{y} \)[/tex] is the predicted value (petal width in this case),
- [tex]\( x \)[/tex] is the independent variable (petal length in this case),
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept.
Through the process, we determine that the slope ([tex]\( m \)[/tex]) is 0.109 and the y-intercept ([tex]\( b \)[/tex]) is 0.091. Thus, the equation for the least square regression line is:
[tex]\[ \hat{y} = 0.109x + 0.091 \][/tex]
Next, we need to predict the petal width for a flower with a petal length of 4.68 cm using the regression equation. Plugging [tex]\( x = 4.68 \)[/tex] cm into the equation:
[tex]\[ \hat{y} = 0.109(4.68) + 0.091 \][/tex]
Calculating this:
[tex]\[ \hat{y} = 0.109 \times 4.68 + 0.091 \][/tex]
[tex]\[ \hat{y} = 0.51012 + 0.091 \][/tex]
[tex]\[ \hat{y} = 0.601 \][/tex]
Thus, the predicted petal width for an iris setosa flower with a petal length of 4.68 cm is:
[tex]\[ 0.601 \text{ cm} \][/tex]
Summarizing:
1. The equation for the least square regression line is:
[tex]\[ \hat{y} = 0.109x + 0.091 \][/tex]
2. The predicted petal width for a petal length of 4.68 cm is:
[tex]\[ 0.601 \text{ cm} \][/tex]
[tex]\[ \hat{y} = mx + b \][/tex]
where:
- [tex]\( \hat{y} \)[/tex] is the predicted value (petal width in this case),
- [tex]\( x \)[/tex] is the independent variable (petal length in this case),
- [tex]\( m \)[/tex] is the slope of the line,
- [tex]\( b \)[/tex] is the y-intercept.
Through the process, we determine that the slope ([tex]\( m \)[/tex]) is 0.109 and the y-intercept ([tex]\( b \)[/tex]) is 0.091. Thus, the equation for the least square regression line is:
[tex]\[ \hat{y} = 0.109x + 0.091 \][/tex]
Next, we need to predict the petal width for a flower with a petal length of 4.68 cm using the regression equation. Plugging [tex]\( x = 4.68 \)[/tex] cm into the equation:
[tex]\[ \hat{y} = 0.109(4.68) + 0.091 \][/tex]
Calculating this:
[tex]\[ \hat{y} = 0.109 \times 4.68 + 0.091 \][/tex]
[tex]\[ \hat{y} = 0.51012 + 0.091 \][/tex]
[tex]\[ \hat{y} = 0.601 \][/tex]
Thus, the predicted petal width for an iris setosa flower with a petal length of 4.68 cm is:
[tex]\[ 0.601 \text{ cm} \][/tex]
Summarizing:
1. The equation for the least square regression line is:
[tex]\[ \hat{y} = 0.109x + 0.091 \][/tex]
2. The predicted petal width for a petal length of 4.68 cm is:
[tex]\[ 0.601 \text{ cm} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.