Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how many O[tex]\(_2\)[/tex] molecules are needed to form one P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex] molecule, we follow these steps:
1. Write down the given chemical equation:
[tex]\[ P_4(s) + x O_2(g) \rightarrow P_4O_{10}(s) \][/tex]
2. Determine the number of oxygen atoms in P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex]:
- A single molecule of P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex] contains 10 oxygen atoms.
3. Recall that each O[tex]\(_2\)[/tex] molecule contains 2 oxygen atoms:
- We need O[tex]\(_2\)[/tex] molecules to supply the oxygen atoms required to form P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex].
4. Calculate the number of O[tex]\(_2\)[/tex] molecules required:
- To get the 10 oxygen atoms needed, we divide the total number of oxygen atoms required by the number of atoms contained in each O[tex]\(_2\)[/tex] molecule.
[tex]\[ \frac{10 \text{ oxygen atoms}}{2 \text{ oxygen atoms per O}_2} = 5 \text{ O}_2 \text{ molecules} \][/tex]
5. Conclusion:
- Therefore, 5 molecules of O[tex]\(_2\)[/tex] are needed to form one molecule of P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex].
The balanced equation is:
[tex]\[ P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s) \][/tex]
1. Write down the given chemical equation:
[tex]\[ P_4(s) + x O_2(g) \rightarrow P_4O_{10}(s) \][/tex]
2. Determine the number of oxygen atoms in P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex]:
- A single molecule of P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex] contains 10 oxygen atoms.
3. Recall that each O[tex]\(_2\)[/tex] molecule contains 2 oxygen atoms:
- We need O[tex]\(_2\)[/tex] molecules to supply the oxygen atoms required to form P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex].
4. Calculate the number of O[tex]\(_2\)[/tex] molecules required:
- To get the 10 oxygen atoms needed, we divide the total number of oxygen atoms required by the number of atoms contained in each O[tex]\(_2\)[/tex] molecule.
[tex]\[ \frac{10 \text{ oxygen atoms}}{2 \text{ oxygen atoms per O}_2} = 5 \text{ O}_2 \text{ molecules} \][/tex]
5. Conclusion:
- Therefore, 5 molecules of O[tex]\(_2\)[/tex] are needed to form one molecule of P[tex]\(_4\)[/tex]O[tex]\(_{10}\)[/tex].
The balanced equation is:
[tex]\[ P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.