Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To classify the triangle ABC, let's start by considering the given properties:
1. Angle Measures: The triangle has angles of [tex]\(60^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(60^\circ\)[/tex]. Each angle is [tex]\(60^\circ\)[/tex], indicating that all angles in the triangle are equal.
2. Side Lengths: The triangle has three congruent (equal) sides.
Now, let’s go through the classification options:
### Types of Triangles by Side Length:
1. Equilateral Triangle: A triangle with all three sides of equal length.
2. Isosceles Triangle: A triangle with at least two sides of equal length.
3. Scalene Triangle: A triangle with all sides of different lengths.
Since ABC has three congruent sides, it is an Equilateral Triangle.
### Types of Triangles by Angle Measure:
1. Acute Triangle: A triangle where all three interior angles are less than [tex]\(90^\circ\)[/tex].
2. Obtuse Triangle: A triangle with one interior angle greater than [tex]\(90^\circ\)[/tex].
3. Right Triangle: A triangle with one interior angle equal to [tex]\(90^\circ\)[/tex].
Given that the angles of triangle ABC are [tex]\(60^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(60^\circ\)[/tex], all angles are less than [tex]\(90^\circ\)[/tex]. Thus, it is an Acute Triangle.
Combining both classifications, the triangle ABC is an Equilateral Acute Triangle.
Therefore, the triangle ABC is correctly classified as:
Equilateral acute
So, the answer is:
- Equilateral acute
1. Angle Measures: The triangle has angles of [tex]\(60^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(60^\circ\)[/tex]. Each angle is [tex]\(60^\circ\)[/tex], indicating that all angles in the triangle are equal.
2. Side Lengths: The triangle has three congruent (equal) sides.
Now, let’s go through the classification options:
### Types of Triangles by Side Length:
1. Equilateral Triangle: A triangle with all three sides of equal length.
2. Isosceles Triangle: A triangle with at least two sides of equal length.
3. Scalene Triangle: A triangle with all sides of different lengths.
Since ABC has three congruent sides, it is an Equilateral Triangle.
### Types of Triangles by Angle Measure:
1. Acute Triangle: A triangle where all three interior angles are less than [tex]\(90^\circ\)[/tex].
2. Obtuse Triangle: A triangle with one interior angle greater than [tex]\(90^\circ\)[/tex].
3. Right Triangle: A triangle with one interior angle equal to [tex]\(90^\circ\)[/tex].
Given that the angles of triangle ABC are [tex]\(60^\circ\)[/tex], [tex]\(60^\circ\)[/tex], and [tex]\(60^\circ\)[/tex], all angles are less than [tex]\(90^\circ\)[/tex]. Thus, it is an Acute Triangle.
Combining both classifications, the triangle ABC is an Equilateral Acute Triangle.
Therefore, the triangle ABC is correctly classified as:
Equilateral acute
So, the answer is:
- Equilateral acute
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.