Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's break down each question with a detailed, step-by-step solution:
### 1. Analyzing Samples of Magnesium Sulfide (MgS)
A sample of magnesium sulfide (MgS) is analyzed.
- First Sample:
- 12 g of magnesium (Mg)
- 16 g of sulfur (S)
The ratio of magnesium to sulfur in the first sample can be calculated as follows:
[tex]\[ \frac{\text{Mass of S}}{\text{Mass of Mg}} = \frac{16}{12} = \frac{4}{3} \][/tex]
- Second Sample:
- 36 g of magnesium (Mg)
- Let [tex]\( x \)[/tex] be the mass of sulfur (S)
Using the same ratio as the first sample:
[tex]\[ \frac{x}{36} = \frac{4}{3} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 36 \times \frac{4}{3} = 36 \times 1.3333 = 48 \][/tex]
So, the value of [tex]\( x \)[/tex] is 48 g of sulfur.
### 2. Extracting Silver from Silver Bromide
- The atomic mass of silver (Ag) is 108.
- The atomic mass of bromine (Br) is 80.
- The combined molecular mass of silver bromide (AgBr) is:
[tex]\[ 108 + 80 = 188 \][/tex]
We are given 564 g of silver bromide (AgBr), and we need to find out how much pure silver (Ag) can be extracted from it.
The fraction of the mass of Ag in AgBr is:
[tex]\[ \frac{108}{188} \][/tex]
The total mass of silver that can be extracted from 564 g of silver bromide is:
[tex]\[ 564 \times \frac{108}{188} = 324 \][/tex]
So, the mass of silver that can be extracted is 324 g.
### 3. Fixed Ratios of Atoms in Given Compounds
Let's evaluate the fixed ratio of atoms in each given compound:
3.1 CaCl₄:
- 1 calcium (Ca) atom
- 4 chlorine (Cl) atoms
The ratio [tex]\( \text{Ca}:\text{Cl}_4 \)[/tex] is:
[tex]\[ 1 : 4 \][/tex]
3.2 NaRg:
- 1 sodium (Na) atom
- 1 radon (Rg) atom
The ratio [tex]\( \text{Na}:\text{Rg} \)[/tex] is:
[tex]\[ 1 : 1 \][/tex]
3.3 NaO₄:
- 1 sodium (Na) atom
- 4 oxygen (O) atoms
The ratio [tex]\( \text{Na}:\text{O}_4 \)[/tex] is:
[tex]\[ 1 : 4 \][/tex]
3.4 CH₄:
- 1 carbon (C) atom
- 4 hydrogen (H) atoms
The ratio [tex]\( \text{C}:\text{H}_4 \)[/tex] is:
[tex]\[ 1 : 4 \][/tex]
3.5 AH₃S:
- 1 atom of element A
- 3 hydrogen (H) atoms
- 1 sulfur (S) atom
The ratio [tex]\( A:\text{H}_3 \times \text{S} \)[/tex] is:
[tex]\[ 1 : 3 \times 1 \][/tex]
or more simply,
[tex]\[ 1 : 3 \][/tex]
3.6 NH₃:
- 1 nitrogen (N) atom
- 3 hydrogen (H) atoms
The ratio [tex]\( \text{N}:\text{H}_3 \)[/tex] is:
[tex]\[ 1 : 3 \][/tex]
### Summary of Results
1. The value of [tex]\( x \)[/tex] is 48 g.
2. The mass of silver extracted from 564 g of silver bromide is 324 g.
3. Fixed ratios of atoms in given compounds:
- 3.1 CaCl₄: 1 : 4
- 3.2 NaRg: 1 : 1
- 3.3 NaO₄: 1 : 4
- 3.4 CH₄: 1 : 4
- 3.5 AH₃S: 1 : 3
- 3.6 NH₃: 1 : 3
### 1. Analyzing Samples of Magnesium Sulfide (MgS)
A sample of magnesium sulfide (MgS) is analyzed.
- First Sample:
- 12 g of magnesium (Mg)
- 16 g of sulfur (S)
The ratio of magnesium to sulfur in the first sample can be calculated as follows:
[tex]\[ \frac{\text{Mass of S}}{\text{Mass of Mg}} = \frac{16}{12} = \frac{4}{3} \][/tex]
- Second Sample:
- 36 g of magnesium (Mg)
- Let [tex]\( x \)[/tex] be the mass of sulfur (S)
Using the same ratio as the first sample:
[tex]\[ \frac{x}{36} = \frac{4}{3} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 36 \times \frac{4}{3} = 36 \times 1.3333 = 48 \][/tex]
So, the value of [tex]\( x \)[/tex] is 48 g of sulfur.
### 2. Extracting Silver from Silver Bromide
- The atomic mass of silver (Ag) is 108.
- The atomic mass of bromine (Br) is 80.
- The combined molecular mass of silver bromide (AgBr) is:
[tex]\[ 108 + 80 = 188 \][/tex]
We are given 564 g of silver bromide (AgBr), and we need to find out how much pure silver (Ag) can be extracted from it.
The fraction of the mass of Ag in AgBr is:
[tex]\[ \frac{108}{188} \][/tex]
The total mass of silver that can be extracted from 564 g of silver bromide is:
[tex]\[ 564 \times \frac{108}{188} = 324 \][/tex]
So, the mass of silver that can be extracted is 324 g.
### 3. Fixed Ratios of Atoms in Given Compounds
Let's evaluate the fixed ratio of atoms in each given compound:
3.1 CaCl₄:
- 1 calcium (Ca) atom
- 4 chlorine (Cl) atoms
The ratio [tex]\( \text{Ca}:\text{Cl}_4 \)[/tex] is:
[tex]\[ 1 : 4 \][/tex]
3.2 NaRg:
- 1 sodium (Na) atom
- 1 radon (Rg) atom
The ratio [tex]\( \text{Na}:\text{Rg} \)[/tex] is:
[tex]\[ 1 : 1 \][/tex]
3.3 NaO₄:
- 1 sodium (Na) atom
- 4 oxygen (O) atoms
The ratio [tex]\( \text{Na}:\text{O}_4 \)[/tex] is:
[tex]\[ 1 : 4 \][/tex]
3.4 CH₄:
- 1 carbon (C) atom
- 4 hydrogen (H) atoms
The ratio [tex]\( \text{C}:\text{H}_4 \)[/tex] is:
[tex]\[ 1 : 4 \][/tex]
3.5 AH₃S:
- 1 atom of element A
- 3 hydrogen (H) atoms
- 1 sulfur (S) atom
The ratio [tex]\( A:\text{H}_3 \times \text{S} \)[/tex] is:
[tex]\[ 1 : 3 \times 1 \][/tex]
or more simply,
[tex]\[ 1 : 3 \][/tex]
3.6 NH₃:
- 1 nitrogen (N) atom
- 3 hydrogen (H) atoms
The ratio [tex]\( \text{N}:\text{H}_3 \)[/tex] is:
[tex]\[ 1 : 3 \][/tex]
### Summary of Results
1. The value of [tex]\( x \)[/tex] is 48 g.
2. The mass of silver extracted from 564 g of silver bromide is 324 g.
3. Fixed ratios of atoms in given compounds:
- 3.1 CaCl₄: 1 : 4
- 3.2 NaRg: 1 : 1
- 3.3 NaO₄: 1 : 4
- 3.4 CH₄: 1 : 4
- 3.5 AH₃S: 1 : 3
- 3.6 NH₃: 1 : 3
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.