Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve the inequality step-by-step and find the correct solution in interval notation.
Given the inequality:
[tex]\[ 9x - 8 \leq 4x - 15 \][/tex]
1. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
[tex]\[ 9x - 4x - 8 \leq -15 \][/tex]
[tex]\[ 5x - 8 \leq -15 \][/tex]
2. Isolate the [tex]\( x \)[/tex]-term by adding 8 to both sides of the inequality:
[tex]\[ 5x - 8 + 8 \leq -15 + 8 \][/tex]
[tex]\[ 5x \leq -7 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x \leq \frac{-7}{5} \][/tex]
[tex]\[ x \leq -1.4 \][/tex]
Thus, the solution set in interval notation is:
[tex]\[ (-\infty, -1.4] \][/tex]
Let’s graph the solution set on a number line:
1. Draw a number line and mark the point [tex]\(-1.4\)[/tex].
2. Use a filled (or solid) circle at [tex]\( -1.4 \)[/tex] to indicate that [tex]\(-1.4\)[/tex] is included in the solution set (i.e., [tex]\( x \)[/tex] can be equal to [tex]\(-1.4\)[/tex]).
3. Shade or draw a line extending leftwards from [tex]\(-1.4\)[/tex] to indicate that all values less than [tex]\(-1.4\)[/tex] are part of the solution set.
Here is the graphical representation:
[tex]\[ \begin{array}{c c c c c c c c c c c c c c c c c c c c c} \textemdash & \textemdash & \textemdash & \textemdash & \bullet & \textemdash & \textemdash & \textemdash & \textemdash & \textemdash \\ & & & & -1.4 & & & & & \\ \end{array} \][/tex]
Hence, the correct choice is:
A. The solution set in interval notation is [tex]\((- \infty, -1.4]\)[/tex].
Given the inequality:
[tex]\[ 9x - 8 \leq 4x - 15 \][/tex]
1. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
[tex]\[ 9x - 4x - 8 \leq -15 \][/tex]
[tex]\[ 5x - 8 \leq -15 \][/tex]
2. Isolate the [tex]\( x \)[/tex]-term by adding 8 to both sides of the inequality:
[tex]\[ 5x - 8 + 8 \leq -15 + 8 \][/tex]
[tex]\[ 5x \leq -7 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x \leq \frac{-7}{5} \][/tex]
[tex]\[ x \leq -1.4 \][/tex]
Thus, the solution set in interval notation is:
[tex]\[ (-\infty, -1.4] \][/tex]
Let’s graph the solution set on a number line:
1. Draw a number line and mark the point [tex]\(-1.4\)[/tex].
2. Use a filled (or solid) circle at [tex]\( -1.4 \)[/tex] to indicate that [tex]\(-1.4\)[/tex] is included in the solution set (i.e., [tex]\( x \)[/tex] can be equal to [tex]\(-1.4\)[/tex]).
3. Shade or draw a line extending leftwards from [tex]\(-1.4\)[/tex] to indicate that all values less than [tex]\(-1.4\)[/tex] are part of the solution set.
Here is the graphical representation:
[tex]\[ \begin{array}{c c c c c c c c c c c c c c c c c c c c c} \textemdash & \textemdash & \textemdash & \textemdash & \bullet & \textemdash & \textemdash & \textemdash & \textemdash & \textemdash \\ & & & & -1.4 & & & & & \\ \end{array} \][/tex]
Hence, the correct choice is:
A. The solution set in interval notation is [tex]\((- \infty, -1.4]\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.