At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve the inequality step-by-step and find the correct solution in interval notation.
Given the inequality:
[tex]\[ 9x - 8 \leq 4x - 15 \][/tex]
1. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
[tex]\[ 9x - 4x - 8 \leq -15 \][/tex]
[tex]\[ 5x - 8 \leq -15 \][/tex]
2. Isolate the [tex]\( x \)[/tex]-term by adding 8 to both sides of the inequality:
[tex]\[ 5x - 8 + 8 \leq -15 + 8 \][/tex]
[tex]\[ 5x \leq -7 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x \leq \frac{-7}{5} \][/tex]
[tex]\[ x \leq -1.4 \][/tex]
Thus, the solution set in interval notation is:
[tex]\[ (-\infty, -1.4] \][/tex]
Let’s graph the solution set on a number line:
1. Draw a number line and mark the point [tex]\(-1.4\)[/tex].
2. Use a filled (or solid) circle at [tex]\( -1.4 \)[/tex] to indicate that [tex]\(-1.4\)[/tex] is included in the solution set (i.e., [tex]\( x \)[/tex] can be equal to [tex]\(-1.4\)[/tex]).
3. Shade or draw a line extending leftwards from [tex]\(-1.4\)[/tex] to indicate that all values less than [tex]\(-1.4\)[/tex] are part of the solution set.
Here is the graphical representation:
[tex]\[ \begin{array}{c c c c c c c c c c c c c c c c c c c c c} \textemdash & \textemdash & \textemdash & \textemdash & \bullet & \textemdash & \textemdash & \textemdash & \textemdash & \textemdash \\ & & & & -1.4 & & & & & \\ \end{array} \][/tex]
Hence, the correct choice is:
A. The solution set in interval notation is [tex]\((- \infty, -1.4]\)[/tex].
Given the inequality:
[tex]\[ 9x - 8 \leq 4x - 15 \][/tex]
1. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
[tex]\[ 9x - 4x - 8 \leq -15 \][/tex]
[tex]\[ 5x - 8 \leq -15 \][/tex]
2. Isolate the [tex]\( x \)[/tex]-term by adding 8 to both sides of the inequality:
[tex]\[ 5x - 8 + 8 \leq -15 + 8 \][/tex]
[tex]\[ 5x \leq -7 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides by 5:
[tex]\[ x \leq \frac{-7}{5} \][/tex]
[tex]\[ x \leq -1.4 \][/tex]
Thus, the solution set in interval notation is:
[tex]\[ (-\infty, -1.4] \][/tex]
Let’s graph the solution set on a number line:
1. Draw a number line and mark the point [tex]\(-1.4\)[/tex].
2. Use a filled (or solid) circle at [tex]\( -1.4 \)[/tex] to indicate that [tex]\(-1.4\)[/tex] is included in the solution set (i.e., [tex]\( x \)[/tex] can be equal to [tex]\(-1.4\)[/tex]).
3. Shade or draw a line extending leftwards from [tex]\(-1.4\)[/tex] to indicate that all values less than [tex]\(-1.4\)[/tex] are part of the solution set.
Here is the graphical representation:
[tex]\[ \begin{array}{c c c c c c c c c c c c c c c c c c c c c} \textemdash & \textemdash & \textemdash & \textemdash & \bullet & \textemdash & \textemdash & \textemdash & \textemdash & \textemdash \\ & & & & -1.4 & & & & & \\ \end{array} \][/tex]
Hence, the correct choice is:
A. The solution set in interval notation is [tex]\((- \infty, -1.4]\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.