Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To factor the quadratic expression [tex]\( x^2 - x - 56 \)[/tex], follow these steps:
1. Identify the coefficients:
- The quadratic expression is [tex]\( ax^2 + bx + c \)[/tex].
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -56 \)[/tex].
2. Determine the factors of the constant term [tex]\( c \)[/tex]:
- We need to find two numbers that multiply to give [tex]\( c = -56 \)[/tex] and add to give [tex]\( b = -1 \)[/tex].
3. List the factor pairs of [tex]\( -56 \)[/tex]:
- [tex]\((-1, 56)\)[/tex]
- [tex]\((1, -56)\)[/tex]
- [tex]\((-2, 28)\)[/tex]
- [tex]\((2, -28)\)[/tex]
- [tex]\((-4, 14)\)[/tex]
- [tex]\((4, -14)\)[/tex]
- [tex]\((-7, 8)\)[/tex]
- [tex]\((7, -8)\)[/tex]
4. Find the correct pair of factors:
- We need to find a pair that adds up to [tex]\( -1 \)[/tex].
- Among them, [tex]\((7, -8)\)[/tex] satisfies this condition because [tex]\( 7 + (-8) = -1 \)[/tex].
5. Write the quadratic expression using these factors:
- The factors of [tex]\( x^2 - x - 56 \)[/tex] are [tex]\( (x + 7) \)[/tex] and [tex]\( (x - 8) \)[/tex].
6. Write out the factored form:
- The factored form of [tex]\( x^2 - x - 56 \)[/tex] is [tex]\( (x - 8)(x + 7) \)[/tex].
However, your options also need to be checked correctly. The correct factored forms given in the options are:
- [tex]\((x - 8)(x + 7)\)[/tex]
- [tex]\((x - 7)(x + 8)\)[/tex]
- [tex]\((x - 28)(x + 2)\)[/tex]
- [tex]\((x - 2)(x + 28)\)[/tex]
Our factored form is [tex]\((x - 8)(x + 7)\)[/tex]. Reviewing the options, we confirm that:
- Our factorization precisely matches the first option [tex]\((x - 8)(x + 7)\)[/tex].
So, the completely factored form of [tex]\( x^2 - x - 56 \)[/tex] is:
[tex]\[ (x - 8)(x + 7) \][/tex]
And the correct answer is:
[tex]\[ (x - 8)(x + 7) \][/tex]
1. Identify the coefficients:
- The quadratic expression is [tex]\( ax^2 + bx + c \)[/tex].
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -1 \)[/tex], and [tex]\( c = -56 \)[/tex].
2. Determine the factors of the constant term [tex]\( c \)[/tex]:
- We need to find two numbers that multiply to give [tex]\( c = -56 \)[/tex] and add to give [tex]\( b = -1 \)[/tex].
3. List the factor pairs of [tex]\( -56 \)[/tex]:
- [tex]\((-1, 56)\)[/tex]
- [tex]\((1, -56)\)[/tex]
- [tex]\((-2, 28)\)[/tex]
- [tex]\((2, -28)\)[/tex]
- [tex]\((-4, 14)\)[/tex]
- [tex]\((4, -14)\)[/tex]
- [tex]\((-7, 8)\)[/tex]
- [tex]\((7, -8)\)[/tex]
4. Find the correct pair of factors:
- We need to find a pair that adds up to [tex]\( -1 \)[/tex].
- Among them, [tex]\((7, -8)\)[/tex] satisfies this condition because [tex]\( 7 + (-8) = -1 \)[/tex].
5. Write the quadratic expression using these factors:
- The factors of [tex]\( x^2 - x - 56 \)[/tex] are [tex]\( (x + 7) \)[/tex] and [tex]\( (x - 8) \)[/tex].
6. Write out the factored form:
- The factored form of [tex]\( x^2 - x - 56 \)[/tex] is [tex]\( (x - 8)(x + 7) \)[/tex].
However, your options also need to be checked correctly. The correct factored forms given in the options are:
- [tex]\((x - 8)(x + 7)\)[/tex]
- [tex]\((x - 7)(x + 8)\)[/tex]
- [tex]\((x - 28)(x + 2)\)[/tex]
- [tex]\((x - 2)(x + 28)\)[/tex]
Our factored form is [tex]\((x - 8)(x + 7)\)[/tex]. Reviewing the options, we confirm that:
- Our factorization precisely matches the first option [tex]\((x - 8)(x + 7)\)[/tex].
So, the completely factored form of [tex]\( x^2 - x - 56 \)[/tex] is:
[tex]\[ (x - 8)(x + 7) \][/tex]
And the correct answer is:
[tex]\[ (x - 8)(x + 7) \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.