At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright, let's analyze the problem step-by-step.
We are working with the following pair of equations:
1. [tex]\( y = -2x + 3 \)[/tex]
2. [tex]\( y = x^2 - x + 1 \)[/tex]
We need to find the points where these two equations intersect. Let's check each of the given points to see if they satisfy both equations:
1. Point [tex]\( (0.5, 0.75) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(0.5) + 3 = -1 + 3 = 2 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (0.5)^2 - 0.5 + 1 = 0.25 - 0.5 + 1 = 0.75 \][/tex]
As we see, [tex]\( (0.5, 0.75) \)[/tex] does not satisfy the first equation because the calculated [tex]\( y \)[/tex] value is [tex]\( 2 \)[/tex], not [tex]\( 0.75 \)[/tex].
2. Point [tex]\( (1, 1) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(1) + 3 = -2 + 3 = 1 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (1)^2 - 1 + 1 = 1 - 1 + 1 = 1 \][/tex]
The point [tex]\( (1, 1) \)[/tex] satisfies both equations.
3. Point [tex]\( (-2, 7) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(-2) + 3 = 4 + 3 = 7 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (-2)^2 - (-2) + 1 = 4 + 2 + 1 = 7 \][/tex]
The point [tex]\( (-2, 7) \)[/tex] satisfies both equations.
4. Point [tex]\( (0, 1) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(0) + 3 = 3 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (0)^2 - 0 + 1 = 1 \][/tex]
The point [tex]\( (0, 1) \)[/tex] does not satisfy the first equation because the calculated [tex]\( y \)[/tex] value is [tex]\( 3 \)[/tex], not [tex]\( 1 \)[/tex].
So summarizing the results:
- The point [tex]\((0.5,0.75)\)[/tex] does not satisfy both equations.
- The point [tex]\((1,1)\)[/tex] satisfies both equations.
- The point [tex]\((-2,7)\)[/tex] satisfies both equations.
- The point [tex]\((0,1)\)[/tex] does not satisfy both equations.
Therefore, the intersection points from the given list of options where both of the given equations hold true are:
- Points [tex]\( (-2, 7) \)[/tex] and [tex]\( (1, 1) \)[/tex].
We are working with the following pair of equations:
1. [tex]\( y = -2x + 3 \)[/tex]
2. [tex]\( y = x^2 - x + 1 \)[/tex]
We need to find the points where these two equations intersect. Let's check each of the given points to see if they satisfy both equations:
1. Point [tex]\( (0.5, 0.75) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(0.5) + 3 = -1 + 3 = 2 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (0.5)^2 - 0.5 + 1 = 0.25 - 0.5 + 1 = 0.75 \][/tex]
As we see, [tex]\( (0.5, 0.75) \)[/tex] does not satisfy the first equation because the calculated [tex]\( y \)[/tex] value is [tex]\( 2 \)[/tex], not [tex]\( 0.75 \)[/tex].
2. Point [tex]\( (1, 1) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(1) + 3 = -2 + 3 = 1 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (1)^2 - 1 + 1 = 1 - 1 + 1 = 1 \][/tex]
The point [tex]\( (1, 1) \)[/tex] satisfies both equations.
3. Point [tex]\( (-2, 7) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(-2) + 3 = 4 + 3 = 7 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (-2)^2 - (-2) + 1 = 4 + 2 + 1 = 7 \][/tex]
The point [tex]\( (-2, 7) \)[/tex] satisfies both equations.
4. Point [tex]\( (0, 1) \)[/tex]
For [tex]\( y = -2x + 3 \)[/tex]:
[tex]\[ y = -2(0) + 3 = 3 \][/tex]
For [tex]\( y = x^2 - x + 1 \)[/tex]:
[tex]\[ y = (0)^2 - 0 + 1 = 1 \][/tex]
The point [tex]\( (0, 1) \)[/tex] does not satisfy the first equation because the calculated [tex]\( y \)[/tex] value is [tex]\( 3 \)[/tex], not [tex]\( 1 \)[/tex].
So summarizing the results:
- The point [tex]\((0.5,0.75)\)[/tex] does not satisfy both equations.
- The point [tex]\((1,1)\)[/tex] satisfies both equations.
- The point [tex]\((-2,7)\)[/tex] satisfies both equations.
- The point [tex]\((0,1)\)[/tex] does not satisfy both equations.
Therefore, the intersection points from the given list of options where both of the given equations hold true are:
- Points [tex]\( (-2, 7) \)[/tex] and [tex]\( (1, 1) \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.