Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given sets of ordered pairs represents a function, we must understand that a relation is a function if and only if each input (or first element of each pair, which is the [tex]\( x \)[/tex]-value) is associated with exactly one output (or second element of each pair, which is the [tex]\( y \)[/tex]-value). In other words, there should be no repeated [tex]\( x \)[/tex]-values with different [tex]\( y \)[/tex]-values.
Let's analyze each set of pairs individually to check if they are functions.
1. Set 1: [tex]\(\{(5, 4), (5, 6), (5, 8), (5, 10), (5, 12)\}\)[/tex]
- Here, all pairs have [tex]\( x = 5 \)[/tex].
- The [tex]\( x \)[/tex]-value 5 is associated with different [tex]\( y \)[/tex]-values (4, 6, 8, 10, and 12).
- This means that an input of 5 corresponds to multiple outputs, which violates the definition of a function.
- Conclusion: This set is not a function.
2. Set 2: [tex]\(\{(-3, -2), (-2, -1), (0, -1), (0, 1), (1, 2)\}\)[/tex]
- Here, the [tex]\( x \)[/tex]-value 0 is repeated with [tex]\( y = -1 \)[/tex] and [tex]\( y = 1 \)[/tex].
- This means that an input of 0 corresponds to different outputs, which again violates the definition of a function.
- Conclusion: This set is not a function.
3. Set 3: [tex]\(\{(5, 2), (-4, 2), (3, 6), (0, 4), (-1, 2)\}\)[/tex]
- In this set, each [tex]\( x \)[/tex]-value (5, -4, 3, 0, -1) is paired uniquely with a [tex]\( y \)[/tex]-value.
- There are no repeated [tex]\( x \)[/tex]-values.
- Each input is associated with exactly one output.
- Conclusion: This set is a function.
4. Set 4: [tex]\(\{(7, 3), (-6, 8), (-3, 5), (0, -3), (7, 11)\}\)[/tex]
- Here, the [tex]\( x \)[/tex]-value 7 is repeated with [tex]\( y = 3 \)[/tex] and [tex]\( y = 11 \)[/tex].
- This means that an input of 7 corresponds to different outputs, which violates the definition of a function.
- Conclusion: This set is not a function.
Summarizing the analysis:
- [tex]\(\{(5, 4), (5, 6), (5, 8), (5, 10), (5, 12)\}\)[/tex] is not a function.
- [tex]\(\{(-3, -2), (-2, -1), (0, -1), (0, 1), (1, 2)\}\)[/tex] is not a function.
- [tex]\(\{(5, 2), (-4, 2), (3, 6), (0, 4), (-1, 2)\}\)[/tex] is a function.
- [tex]\(\{(7, 3), (-6, 8), (-3, 5), (0, -3), (7, 11)\}\)[/tex] is not a function.
Hence, the only relation that is a function is the third set:
[tex]\[ \{(5,2),(-4,2),(3,6),(0,4),(-1,2)\} \][/tex]
Let's analyze each set of pairs individually to check if they are functions.
1. Set 1: [tex]\(\{(5, 4), (5, 6), (5, 8), (5, 10), (5, 12)\}\)[/tex]
- Here, all pairs have [tex]\( x = 5 \)[/tex].
- The [tex]\( x \)[/tex]-value 5 is associated with different [tex]\( y \)[/tex]-values (4, 6, 8, 10, and 12).
- This means that an input of 5 corresponds to multiple outputs, which violates the definition of a function.
- Conclusion: This set is not a function.
2. Set 2: [tex]\(\{(-3, -2), (-2, -1), (0, -1), (0, 1), (1, 2)\}\)[/tex]
- Here, the [tex]\( x \)[/tex]-value 0 is repeated with [tex]\( y = -1 \)[/tex] and [tex]\( y = 1 \)[/tex].
- This means that an input of 0 corresponds to different outputs, which again violates the definition of a function.
- Conclusion: This set is not a function.
3. Set 3: [tex]\(\{(5, 2), (-4, 2), (3, 6), (0, 4), (-1, 2)\}\)[/tex]
- In this set, each [tex]\( x \)[/tex]-value (5, -4, 3, 0, -1) is paired uniquely with a [tex]\( y \)[/tex]-value.
- There are no repeated [tex]\( x \)[/tex]-values.
- Each input is associated with exactly one output.
- Conclusion: This set is a function.
4. Set 4: [tex]\(\{(7, 3), (-6, 8), (-3, 5), (0, -3), (7, 11)\}\)[/tex]
- Here, the [tex]\( x \)[/tex]-value 7 is repeated with [tex]\( y = 3 \)[/tex] and [tex]\( y = 11 \)[/tex].
- This means that an input of 7 corresponds to different outputs, which violates the definition of a function.
- Conclusion: This set is not a function.
Summarizing the analysis:
- [tex]\(\{(5, 4), (5, 6), (5, 8), (5, 10), (5, 12)\}\)[/tex] is not a function.
- [tex]\(\{(-3, -2), (-2, -1), (0, -1), (0, 1), (1, 2)\}\)[/tex] is not a function.
- [tex]\(\{(5, 2), (-4, 2), (3, 6), (0, 4), (-1, 2)\}\)[/tex] is a function.
- [tex]\(\{(7, 3), (-6, 8), (-3, 5), (0, -3), (7, 11)\}\)[/tex] is not a function.
Hence, the only relation that is a function is the third set:
[tex]\[ \{(5,2),(-4,2),(3,6),(0,4),(-1,2)\} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.