Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the problem step-by-step to determine the area of grass that will be watered by the rotating sprinkler head.
Step 1: Understand the Problem
- The sprinkler sprays water up to a radius of 20 feet.
- It covers a central angle of [tex]\(80^\circ\)[/tex].
Step 2: Convert the Angle from Degrees to Radians
To use the formula for the area of a sector, we need to convert the angle from degrees to radians. The conversion factor is:
[tex]\[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \][/tex]
So, for [tex]\(80^\circ\)[/tex]:
[tex]\[ 80^\circ \times \frac{\pi}{180} = \frac{80\pi}{180} = \frac{4\pi}{9} \text{ radians} \][/tex]
Step 3: Use the Formula for the Area of a Sector
The formula for the area [tex]\(A\)[/tex] of a sector with radius [tex]\(r\)[/tex] and angle [tex]\(\theta\)[/tex] in radians is:
[tex]\[ A = \frac{1}{2} r^2 \theta \][/tex]
Here, [tex]\(r = 20 \text{ feet}\)[/tex] and [tex]\(\theta = \frac{4\pi}{9} \text{ radians} \)[/tex].
Step 4: Plug in the Values
[tex]\[ A = \frac{1}{2} \times (20)^2 \times \frac{4\pi}{9} \][/tex]
[tex]\[ A = \frac{1}{2} \times 400 \times \frac{4\pi}{9} \][/tex]
[tex]\[ A = 200 \times \frac{4\pi}{9} \][/tex]
[tex]\[ A = \frac{800 \pi}{9} \][/tex]
So, the area of the grass that will be watered is:
[tex]\[ \boxed{\frac{800\pi}{9} \text{ square feet}} \][/tex]
Therefore, the correct answer is [tex]\(D. \frac{800}{9} \pi \text{ ft}^2\)[/tex].
Step 1: Understand the Problem
- The sprinkler sprays water up to a radius of 20 feet.
- It covers a central angle of [tex]\(80^\circ\)[/tex].
Step 2: Convert the Angle from Degrees to Radians
To use the formula for the area of a sector, we need to convert the angle from degrees to radians. The conversion factor is:
[tex]\[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \][/tex]
So, for [tex]\(80^\circ\)[/tex]:
[tex]\[ 80^\circ \times \frac{\pi}{180} = \frac{80\pi}{180} = \frac{4\pi}{9} \text{ radians} \][/tex]
Step 3: Use the Formula for the Area of a Sector
The formula for the area [tex]\(A\)[/tex] of a sector with radius [tex]\(r\)[/tex] and angle [tex]\(\theta\)[/tex] in radians is:
[tex]\[ A = \frac{1}{2} r^2 \theta \][/tex]
Here, [tex]\(r = 20 \text{ feet}\)[/tex] and [tex]\(\theta = \frac{4\pi}{9} \text{ radians} \)[/tex].
Step 4: Plug in the Values
[tex]\[ A = \frac{1}{2} \times (20)^2 \times \frac{4\pi}{9} \][/tex]
[tex]\[ A = \frac{1}{2} \times 400 \times \frac{4\pi}{9} \][/tex]
[tex]\[ A = 200 \times \frac{4\pi}{9} \][/tex]
[tex]\[ A = \frac{800 \pi}{9} \][/tex]
So, the area of the grass that will be watered is:
[tex]\[ \boxed{\frac{800\pi}{9} \text{ square feet}} \][/tex]
Therefore, the correct answer is [tex]\(D. \frac{800}{9} \pi \text{ ft}^2\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.