At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Solving Quadratic Equations Using Algebra

Which is true about all quadratic equations that contain a difference of squares?

A. The value [tex]\(|b|=2 \sqrt{a} \sqrt{c}\)[/tex].
B. Only the value of [tex]\(c\)[/tex] is a perfect square.
C. Only the value of [tex]\(a\)[/tex] is a perfect square.
D. The value [tex]\(b=0\)[/tex].


Sagot :

To determine the characteristics of quadratic equations that contain a difference of squares, let's begin by understanding the general form of such equations.

A quadratic equation typically has the form:
[tex]\[ ax^2 + bx + c = 0 \][/tex]

However, a quadratic equation that contains a difference of squares can be written in a different specific form, which is:
[tex]\[ a(x^2) - c = 0 \][/tex]

This form can be derived by recognizing the structure of the difference of squares:
[tex]\[ (x^2 - a^2) = (x + a)(x - a) \][/tex]

But in a more general term considering the equation [tex]\( a(x^2) - c = 0 \)[/tex], we note the following:
1. There is no [tex]\(bx\)[/tex] term, which implies that [tex]\( b = 0 \)[/tex].

Based on this structure:
[tex]\[ a(x^2) - c = 0 \][/tex]

The middle term ([tex]\(bx\)[/tex]) is missing; hence, [tex]\( b \)[/tex] has to be zero ([tex]\( b = 0 \)[/tex]).

This tells us something special about the value of [tex]\( b \)[/tex] in such quadratic equations:
- The value [tex]\( b \)[/tex] must be [tex]\( 0 \)[/tex].

Now, reviewing the given options:

1. The value [tex]\(|b| = 2 \sqrt{a} \sqrt{c}\)[/tex]: This statement is not true given our structure. The value of [tex]\( b \)[/tex] in the standard form is derived to be 0, irrespective of the values of [tex]\( a \)[/tex] and [tex]\( c \)[/tex].
2. Only the value of [tex]\( c \)[/tex] is a perfect square: This is not necessarily true. While [tex]\( c \)[/tex] could be a perfect square, it is not a necessary condition for all quadratic equations of this type.
3. Only the value of [tex]\( a \)[/tex] is a perfect square: Similarly, [tex]\( a \)[/tex] being a perfect square is not a requirement for the general form of the equation [tex]\( a(x^2) - c = 0 \)[/tex].
4. The value [tex]\( b = 0 \)[/tex]: This aligns perfectly with our derived structure for the difference of squares equation. As shown, [tex]\( b \)[/tex] must be zero for the equation to lack the [tex]\( bx \)[/tex] term.

Therefore, the correct answer to the question is:
The value [tex]\( b = 0 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.