Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the division of the polynomial [tex]\(6x^4 - 28x^2 - 9x + 10\)[/tex] by the polynomial [tex]\(x + 2\)[/tex] using long division step by step.
1. Setup the division:
- Dividend: [tex]\(6x^4 - 28x^2 - 9x + 10\)[/tex]
- Divisor: [tex]\(x + 2\)[/tex]
2. Determine the first term of the quotient:
- Divide the leading term of the dividend [tex]\(6x^4\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{6x^4}{x} = 6x^3 \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ 6x^3 \cdot (x + 2) = 6x^4 + 12x^3 \][/tex]
- Subtract this from the original dividend:
[tex]\[ (6x^4 - 28x^2 - 9x + 10) - (6x^4 + 12x^3) = -12x^3 - 28x^2 - 9x + 10 \][/tex]
3. Determine the second term of the quotient:
- Divide the leading term of the new polynomial [tex]\(-12x^3\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{-12x^3}{x} = -12x^2 \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ -12x^2 \cdot (x + 2) = -12x^3 - 24x^2 \][/tex]
- Subtract this from the new polynomial:
[tex]\[ (-12x^3 - 28x^2 - 9x + 10) - (-12x^3 - 24x^2) = -4x^2 - 9x + 10 \][/tex]
4. Determine the third term of the quotient:
- Divide the leading term of the new polynomial [tex]\(-4x^2\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{-4x^2}{x} = -4x \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ -4x \cdot (x + 2) = -4x^2 - 8x \][/tex]
- Subtract this from the new polynomial:
[tex]\[ (-4x^2 - 9x + 10) - (-4x^2 - 8x) = -x + 10 \][/tex]
5. Determine the fourth term of the quotient:
- Divide the leading term of the new polynomial [tex]\(-x\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{-x}{x} = -1 \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ -1 \cdot (x + 2) = -x - 2 \][/tex]
- Subtract this from the new polynomial:
[tex]\[ (-x + 10) - (-x - 2) = 12 \][/tex]
6. Complete the quotient and remainder:
The quotient is the sum of each term derived: [tex]\(6x^3 - 12x^2 - 4x - 1\)[/tex]
The remainder is the result of the final subtraction: [tex]\(12\)[/tex]
Therefore, the quotient is [tex]\(6x^3 - 12x^2 - 4x - 1\)[/tex] and the remainder is [tex]\(12\)[/tex].
So, the division of [tex]\((6x^4 - 28x^2 - 9x + 10) \div (x + 2)\)[/tex] results in:
[tex]\[ 6x^3 - 12x^2 - 4x - 1 \quad \text{remainder} \; 12 \][/tex]
1. Setup the division:
- Dividend: [tex]\(6x^4 - 28x^2 - 9x + 10\)[/tex]
- Divisor: [tex]\(x + 2\)[/tex]
2. Determine the first term of the quotient:
- Divide the leading term of the dividend [tex]\(6x^4\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{6x^4}{x} = 6x^3 \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ 6x^3 \cdot (x + 2) = 6x^4 + 12x^3 \][/tex]
- Subtract this from the original dividend:
[tex]\[ (6x^4 - 28x^2 - 9x + 10) - (6x^4 + 12x^3) = -12x^3 - 28x^2 - 9x + 10 \][/tex]
3. Determine the second term of the quotient:
- Divide the leading term of the new polynomial [tex]\(-12x^3\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{-12x^3}{x} = -12x^2 \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ -12x^2 \cdot (x + 2) = -12x^3 - 24x^2 \][/tex]
- Subtract this from the new polynomial:
[tex]\[ (-12x^3 - 28x^2 - 9x + 10) - (-12x^3 - 24x^2) = -4x^2 - 9x + 10 \][/tex]
4. Determine the third term of the quotient:
- Divide the leading term of the new polynomial [tex]\(-4x^2\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{-4x^2}{x} = -4x \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ -4x \cdot (x + 2) = -4x^2 - 8x \][/tex]
- Subtract this from the new polynomial:
[tex]\[ (-4x^2 - 9x + 10) - (-4x^2 - 8x) = -x + 10 \][/tex]
5. Determine the fourth term of the quotient:
- Divide the leading term of the new polynomial [tex]\(-x\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex]:
[tex]\[ \frac{-x}{x} = -1 \][/tex]
- Multiply the entire divisor by this term:
[tex]\[ -1 \cdot (x + 2) = -x - 2 \][/tex]
- Subtract this from the new polynomial:
[tex]\[ (-x + 10) - (-x - 2) = 12 \][/tex]
6. Complete the quotient and remainder:
The quotient is the sum of each term derived: [tex]\(6x^3 - 12x^2 - 4x - 1\)[/tex]
The remainder is the result of the final subtraction: [tex]\(12\)[/tex]
Therefore, the quotient is [tex]\(6x^3 - 12x^2 - 4x - 1\)[/tex] and the remainder is [tex]\(12\)[/tex].
So, the division of [tex]\((6x^4 - 28x^2 - 9x + 10) \div (x + 2)\)[/tex] results in:
[tex]\[ 6x^3 - 12x^2 - 4x - 1 \quad \text{remainder} \; 12 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.