Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Simplify [tex](8 + 2i) - (6 - 3i) + (4 - i)[/tex].

A. [tex]6 + 4i[/tex]
B. [tex]18 + 4i[/tex]
C. [tex]6 + 6i[/tex]
D. [tex]6 - 2i[/tex]


Sagot :

To simplify the given expression [tex]\((8 + 2i) - (6 - 3i) + (4 - i)\)[/tex], we first need to deal with the subtraction and addition of complex numbers step-by-step.

1. Start with the given expression:
[tex]\[ (8 + 2i) - (6 - 3i) + (4 - i) \][/tex]

2. Distribute the subtraction across the second complex number:
[tex]\[ (8 + 2i) - 6 + 3i + (4 - i) \][/tex]

3. Combine like terms:
[tex]\[ 8 - 6 + 4 + 2i + 3i - i \][/tex]

4. Simplify the real parts:
[tex]\[ (8 - 6 + 4) + (2i + 3i - i) \][/tex]

Breaking it down for clarity:
- Real part: [tex]\( 8 - 6 + 4 = 6 \)[/tex]
- Imaginary part: [tex]\( 2i + 3i - i = 4i \)[/tex]

5. Combine the simplified real and imaginary parts:
[tex]\[ 6 + 4i \][/tex]

Therefore, the simplified form of [tex]\((8 + 2i) - (6 - 3i) + (4 - i)\)[/tex] is [tex]\(\boxed{6 + 4i}\)[/tex]. So the correct answer is:
[tex]\[ \boxed{6 + 4i} \][/tex]