Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Graph the solution of the following system:

[tex]\[
\begin{array}{lr}
x - 3y \geq -3 \\
2x + y \leq 6
\end{array}
\][/tex]

Use the graphing tool to graph the system.

Sagot :

Let's graph the solution of the given system step by step.

The system of inequalities is:

[tex]\[ \begin{array}{lr} x - 3y \geq -3 \\ 2x + y \leq 6 \end{array} \][/tex]

We will graph each inequality one by one and then determine the region of the graph that satisfies both inequalities.

### Step 1: Graph [tex]\( x - 3y \geq -3 \)[/tex]

1. Convert to equality: Rewrite the inequality as an equation to find the boundary line:
[tex]\[ x - 3y = -3 \][/tex]

2. Find intercepts:
- For the x-intercept (when [tex]\( y = 0 \)[/tex]):
[tex]\[ x - 3(0) = -3 \implies x = -3 \][/tex]
So, the x-intercept is [tex]\((-3, 0)\)[/tex].

- For the y-intercept (when [tex]\( x = 0 \)[/tex]):
[tex]\[ 0 - 3y = -3 \implies y = 1 \][/tex]
So, the y-intercept is [tex]\((0, 1)\)[/tex].

3. Draw the boundary line: Plot the points [tex]\((-3, 0)\)[/tex] and [tex]\((0, 1)\)[/tex] and draw a solid line through them, as the inequality includes the boundary line (≥).

4. Shade the region: To determine which side of the line to shade, use a test point (e.g., [tex]\( (0, 0) \)[/tex]):
[tex]\[ 0 - 3(0) \geq -3 \implies 0 \geq -3 \][/tex]
This is true, so we shade the region that includes the point [tex]\((0, 0)\)[/tex].

### Step 2: Graph [tex]\( 2x + y \leq 6 \)[/tex]

1. Convert to equality: Rewrite the inequality as an equation to find the boundary line:
[tex]\[ 2x + y = 6 \][/tex]

2. Find intercepts:
- For the x-intercept (when [tex]\( y = 0 \)[/tex]):
[tex]\[ 2x + 0 = 6 \implies x = 3 \][/tex]
So, the x-intercept is [tex]\((3, 0)\)[/tex].

- For the y-intercept (when [tex]\( x = 0 \)[/tex]):
[tex]\[ 2(0) + y = 6 \implies y = 6 \][/tex]
So, the y-intercept is [tex]\((0, 6)\)[/tex].

3. Draw the boundary line: Plot the points [tex]\((3, 0)\)[/tex] and [tex]\((0, 6)\)[/tex] and draw a solid line through them, as the inequality includes the boundary line (≤).

4. Shade the region: To determine which side of the line to shade, use a test point (e.g., [tex]\( (0, 0) \)[/tex]):
[tex]\[ 2(0) + 0 \leq 6 \implies 0 \leq 6 \][/tex]
This is true, so we shade the region that includes the point [tex]\( (0, 0) \)[/tex].

### Step 3: Determine the solution region

The solution to the system of inequalities is the region where the shaded areas of both inequalities overlap. This region satisfies both [tex]\( x - 3y \geq -3 \)[/tex] and [tex]\( 2x + y \leq 6 \)[/tex].

To graph the solution region:

1. Draw the boundary lines based on the intercept points and the information obtained from the inequalities' boundary lines.
2. Shade accordingly: The final region of interest that satisfies both inequalities is the overlapping shaded region from both inequalities.

Here is a sketch of the graph:

- Draw the boundary line for [tex]\( x - 3y = -3 \)[/tex] passing through [tex]\((-3, 0)\)[/tex] and [tex]\((0, 1)\)[/tex], and shade above the line.
- Draw the boundary line for [tex]\( 2x + y = 6 \)[/tex] passing through [tex]\((3, 0)\)[/tex] and [tex]\((0, 6)\)[/tex], and shade below the line.

The intersection of these shaded regions represents the solution to the system.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.