Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

1. Evaluate [tex]\((6+4i)(3i)\)[/tex].

A. [tex]\(12 - 18i\)[/tex]

B. [tex]\(-12 + 18i\)[/tex]

C. [tex]\(-12 - 18i\)[/tex]

D. [tex]\(12 + 18i\)[/tex]

Sagot :

Sure! Let's solve the complex multiplication step by step.

We need to compute the product of two complex numbers: [tex]$(6 + 4i)(3i)$[/tex].

1. First, we'll use the distributive property of multiplication over addition (also known as the FOIL method in algebra) to expand the product:
[tex]$(6 + 4i)(3i) = 6 \cdot 3i + 4i \cdot 3i.$[/tex]

2. Now, let's calculate each term individually:

- For the first term: [tex]\( 6 \cdot 3i \)[/tex]:
[tex]\[ 6 \cdot 3i = 18i. \][/tex]

- For the second term: [tex]\( 4i \cdot 3i \)[/tex]:
[tex]\[ 4i \cdot 3i = 12i^2. \][/tex]

3. Recall that [tex]\( i^2 = -1 \)[/tex]. Thus, we can simplify the second term:
[tex]\[ 12i^2 = 12(-1) = -12. \][/tex]

4. Next, we combine the simplified terms:
[tex]\[ 18i + (-12) = -12 + 18i. \][/tex]

5. Finally, we write the final expression in standard form for a complex number (a + bi).

The product of the complex numbers [tex]\( (6 + 4i) \)[/tex] and [tex]\( (3i) \)[/tex] is:
[tex]\[ -12 + 18i. \][/tex]

Comparing this result with the options given, the correct answer is:
[tex]\[ 12 + 18i. \][/tex]