Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step-by-step using the given parameters and the vertical motion equation.
### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)
### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]
### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]
### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]
This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]
Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]
### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)
### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]
### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]
### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]
This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]
Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]
### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.