Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the problem step-by-step using the given parameters and the vertical motion equation.
### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)
### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]
### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]
### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]
This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]
Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]
### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)
### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]
### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]
### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]
This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]
Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]
### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.