At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the problem step-by-step using the given parameters and the vertical motion equation.
### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)
### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]
### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]
### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]
This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]
Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]
### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)
### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]
### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]
### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]
Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]
This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]
Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]
### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.