Answered

Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Norma kicks a soccer ball from ground level with an initial velocity of [tex]10.0 \text{ meters per second}[/tex] at an angle of [tex]30.0^{\circ}[/tex] to the ground.

Use the vertical motion equation to determine the time spent in the air. Recall that [tex]\Delta y = 0[/tex]. Round to the nearest hundredth.

[tex]
\Delta y = (v \sin \theta) \Delta t + \frac{1}{2} a (\Delta t)^2
[/tex]

[tex]\Delta t = \square \text{ seconds}[/tex]


Sagot :

Let's solve the problem step-by-step using the given parameters and the vertical motion equation.

### Step 1: Understand the given data
- Initial velocity ([tex]\( v \)[/tex]): 10.0 meters per second
- Angle of projection ([tex]\( \theta \)[/tex]): [tex]\( 30.0^{\circ} \)[/tex]
- Acceleration due to gravity ([tex]\( g \)[/tex]): 9.81 meters per second squared
- Vertical displacement ([tex]\( \Delta y \)[/tex]): 0 meters (since the ball returns to the same level from which it was kicked)

### Step 2: Convert angle to radians
To use the trigonometric functions in our calculations, convert the angle from degrees to radians:
[tex]\[ \theta_{\text{rad}} = \theta \times \frac{\pi}{180} \][/tex]
Thus,
[tex]\[ \theta_{\text{rad}} = 30.0^{\circ} \times \frac{\pi}{180} = \frac{\pi}{6} \text{ radians} \][/tex]

### Step 3: Calculate the vertical component of the initial velocity
Using the sine function, we find the vertical component of the initial velocity ([tex]\( v_y \)[/tex]):
[tex]\[ v_y = v \sin(\theta_{\text{rad}}) \][/tex]
Substitute in the known values:
[tex]\[ v_y = 10.0 \, \text{m/s} \times \sin\left(\frac{\pi}{6}\right) = 10.0 \, \text{m/s} \times 0.5 = 5.0 \, \text{m/s} \][/tex]

### Step 4: Use the vertical motion equation to determine the time in the air
The vertical motion equation is given by:
[tex]\[ \Delta y = v_y \Delta t + \frac{1}{2} a (\Delta t)^2 \][/tex]
Substitute [tex]\(\Delta y = 0\)[/tex], [tex]\(a = -g\)[/tex], and [tex]\(v_y\)[/tex]:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - \frac{1}{2} \times 9.81 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]

Rearranging the equation:
[tex]\[ 0 = 5.0 \, \text{m/s} \times \Delta t - 4.905 \, \text{m/s}^2 \times (\Delta t)^2 \][/tex]

Factor out [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t (5.0 \, \text{m/s} - 4.905 \, \text{m/s}^2 \times \Delta t) = 0 \][/tex]

This gives two solutions:
1. [tex]\(\Delta t = 0\)[/tex] (The initial time)
2. [tex]\(5.0 \, \text{m/s} = 4.905 \, \text{m/s}^2 \times \Delta t\)[/tex]

Solving for [tex]\(\Delta t\)[/tex]:
[tex]\[ \Delta t = \frac{5.0 \, \text{m/s}}{4.905 \, \text{m/s}^2} \approx 1.02 \, \text{seconds} \][/tex]

### Step 5: Round to the nearest hundredth
Hence, the time spent in the air is:
[tex]\[ \boxed{1.02} \, \text{seconds} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.