Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] given [tex]\(x = e^t + \sin(t)\)[/tex] and [tex]\(y = e^t - \cos(t)\)[/tex], we can proceed as follows:
1. Compute [tex]\( \frac{dy}{dt} \)[/tex]:
Given [tex]\( y = e^t - \cos(t) \)[/tex], we differentiate [tex]\( y \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{d}{dt} (e^t - \cos(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\cos(t)\)[/tex], we get:
[tex]\[ \frac{dy}{dt} = e^t - (-\sin(t)) = e^t + \sin(t) \][/tex]
2. Compute [tex]\( \frac{dx}{dt} \)[/tex]:
Given [tex]\( x = e^t + \sin(t) \)[/tex], we differentiate [tex]\( x \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dx}{dt} = \frac{d}{dt} (e^t + \sin(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\sin(t)\)[/tex], we get:
[tex]\[ \frac{dx}{dt} = e^t + \cos(t) \][/tex]
3. Form the ratio [tex]\( \frac{dy}{dx} \)[/tex]:
We use the chain rule to get [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Therefore, the simplified form of [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Comparing this with the options provided:
[tex]\[ \boxed{\frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
Hence, the correct answer is indeed:
[tex]\[ \boxed{(B) \frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
1. Compute [tex]\( \frac{dy}{dt} \)[/tex]:
Given [tex]\( y = e^t - \cos(t) \)[/tex], we differentiate [tex]\( y \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{d}{dt} (e^t - \cos(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\cos(t)\)[/tex], we get:
[tex]\[ \frac{dy}{dt} = e^t - (-\sin(t)) = e^t + \sin(t) \][/tex]
2. Compute [tex]\( \frac{dx}{dt} \)[/tex]:
Given [tex]\( x = e^t + \sin(t) \)[/tex], we differentiate [tex]\( x \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dx}{dt} = \frac{d}{dt} (e^t + \sin(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\sin(t)\)[/tex], we get:
[tex]\[ \frac{dx}{dt} = e^t + \cos(t) \][/tex]
3. Form the ratio [tex]\( \frac{dy}{dx} \)[/tex]:
We use the chain rule to get [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Therefore, the simplified form of [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Comparing this with the options provided:
[tex]\[ \boxed{\frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
Hence, the correct answer is indeed:
[tex]\[ \boxed{(B) \frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.