Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] given [tex]\(x = e^t + \sin(t)\)[/tex] and [tex]\(y = e^t - \cos(t)\)[/tex], we can proceed as follows:
1. Compute [tex]\( \frac{dy}{dt} \)[/tex]:
Given [tex]\( y = e^t - \cos(t) \)[/tex], we differentiate [tex]\( y \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{d}{dt} (e^t - \cos(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\cos(t)\)[/tex], we get:
[tex]\[ \frac{dy}{dt} = e^t - (-\sin(t)) = e^t + \sin(t) \][/tex]
2. Compute [tex]\( \frac{dx}{dt} \)[/tex]:
Given [tex]\( x = e^t + \sin(t) \)[/tex], we differentiate [tex]\( x \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dx}{dt} = \frac{d}{dt} (e^t + \sin(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\sin(t)\)[/tex], we get:
[tex]\[ \frac{dx}{dt} = e^t + \cos(t) \][/tex]
3. Form the ratio [tex]\( \frac{dy}{dx} \)[/tex]:
We use the chain rule to get [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Therefore, the simplified form of [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Comparing this with the options provided:
[tex]\[ \boxed{\frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
Hence, the correct answer is indeed:
[tex]\[ \boxed{(B) \frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
1. Compute [tex]\( \frac{dy}{dt} \)[/tex]:
Given [tex]\( y = e^t - \cos(t) \)[/tex], we differentiate [tex]\( y \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{d}{dt} (e^t - \cos(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\cos(t)\)[/tex], we get:
[tex]\[ \frac{dy}{dt} = e^t - (-\sin(t)) = e^t + \sin(t) \][/tex]
2. Compute [tex]\( \frac{dx}{dt} \)[/tex]:
Given [tex]\( x = e^t + \sin(t) \)[/tex], we differentiate [tex]\( x \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ \frac{dx}{dt} = \frac{d}{dt} (e^t + \sin(t)) \][/tex]
Using the differentiation rules for [tex]\( e^t \)[/tex] and [tex]\(\sin(t)\)[/tex], we get:
[tex]\[ \frac{dx}{dt} = e^t + \cos(t) \][/tex]
3. Form the ratio [tex]\( \frac{dy}{dx} \)[/tex]:
We use the chain rule to get [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Therefore, the simplified form of [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{e^t + \sin(t)}{e^t + \cos(t)} \][/tex]
Comparing this with the options provided:
[tex]\[ \boxed{\frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
Hence, the correct answer is indeed:
[tex]\[ \boxed{(B) \frac{e^t + \sin(t)}{e^t + \cos(t)}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.