Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the system of inequalities graphically and determine whether the solution region is bounded or unbounded, follow these steps:
### Step 1: Understanding the Inequalities
We have the following system of inequalities:
1. [tex]\( x + 2 y \leq 4 \)[/tex]
2. [tex]\( x \geq 0 \)[/tex]
3. [tex]\( y \geq 0 \)[/tex]
### Step 2: Plotting the Boundary Lines
First, consider the equality for each inequality:
1. [tex]\( x + 2 y = 4 \)[/tex]
2. [tex]\( x = 0 \)[/tex]
3. [tex]\( y = 0 \)[/tex]
- [tex]\( x + 2 y = 4 \)[/tex]:
This is a straight line. We can find the intercepts:
- For [tex]\( x \)[/tex]-intercept ([tex]\(y = 0\)[/tex]):
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- For [tex]\( y \)[/tex]-intercept ([tex]\(x = 0\)[/tex]):
[tex]\( 0 + 2 y = 4 \Rightarrow 2 y = 4 \Rightarrow y = 2 \)[/tex]
So, the line passes through points [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 2) \)[/tex].
- [tex]\( x = 0 \)[/tex]:
This is the [tex]\( y \)[/tex]-axis.
- [tex]\( y = 0 \)[/tex]:
This is the [tex]\( x \)[/tex]-axis.
### Step 3: Shading the Regions
- For [tex]\( x + 2 y \leq 4 \)[/tex]: We shade the region below the line [tex]\( x + 2 y = 4 \)[/tex].
- For [tex]\( x \geq 0 \)[/tex]: We shade the region to the right of the [tex]\( y \)[/tex]-axis ([tex]\( x = 0 \)[/tex]).
- For [tex]\( y \geq 0 \)[/tex]: We shade the region above the [tex]\( x \)[/tex]-axis ([tex]\( y = 0 \)[/tex]).
### Step 4: Determining the Solution Region
The solution region is the intersection of all these shaded regions. The feasible region is bounded by the lines [tex]\( x + 2 y = 4 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( y = 0 \)[/tex].
### Step 5: Identifying the Corner Points
The corner points of the feasible solution region (where lines intersect) can be calculated:
1. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( x = 0 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( 0 + 2 y = 4 \Rightarrow y = 2 \)[/tex]
- Coordinate: [tex]\( (0, 2) \)[/tex]
2. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Set [tex]\( y = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- Coordinate: [tex]\( (4, 0) \)[/tex]
3. Intersection of [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Coordinate: [tex]\( (0, 0) \)[/tex]
### Step 6: Conclusion
- The solution region is bounded (as it is restricted by the lines and does not extend infinitely).
- The coordinates of the corner points are:
[tex]\[ (0, 0), (0, 2), (4, 0) \][/tex]
So, to summarize:
- The solution region is: Bounded
- The coordinates of each corner point: [tex]\((0, 0)\)[/tex], [tex]\((0, 2)\)[/tex], [tex]\((4, 0)\)[/tex]
### Step 1: Understanding the Inequalities
We have the following system of inequalities:
1. [tex]\( x + 2 y \leq 4 \)[/tex]
2. [tex]\( x \geq 0 \)[/tex]
3. [tex]\( y \geq 0 \)[/tex]
### Step 2: Plotting the Boundary Lines
First, consider the equality for each inequality:
1. [tex]\( x + 2 y = 4 \)[/tex]
2. [tex]\( x = 0 \)[/tex]
3. [tex]\( y = 0 \)[/tex]
- [tex]\( x + 2 y = 4 \)[/tex]:
This is a straight line. We can find the intercepts:
- For [tex]\( x \)[/tex]-intercept ([tex]\(y = 0\)[/tex]):
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- For [tex]\( y \)[/tex]-intercept ([tex]\(x = 0\)[/tex]):
[tex]\( 0 + 2 y = 4 \Rightarrow 2 y = 4 \Rightarrow y = 2 \)[/tex]
So, the line passes through points [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 2) \)[/tex].
- [tex]\( x = 0 \)[/tex]:
This is the [tex]\( y \)[/tex]-axis.
- [tex]\( y = 0 \)[/tex]:
This is the [tex]\( x \)[/tex]-axis.
### Step 3: Shading the Regions
- For [tex]\( x + 2 y \leq 4 \)[/tex]: We shade the region below the line [tex]\( x + 2 y = 4 \)[/tex].
- For [tex]\( x \geq 0 \)[/tex]: We shade the region to the right of the [tex]\( y \)[/tex]-axis ([tex]\( x = 0 \)[/tex]).
- For [tex]\( y \geq 0 \)[/tex]: We shade the region above the [tex]\( x \)[/tex]-axis ([tex]\( y = 0 \)[/tex]).
### Step 4: Determining the Solution Region
The solution region is the intersection of all these shaded regions. The feasible region is bounded by the lines [tex]\( x + 2 y = 4 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( y = 0 \)[/tex].
### Step 5: Identifying the Corner Points
The corner points of the feasible solution region (where lines intersect) can be calculated:
1. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( x = 0 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( 0 + 2 y = 4 \Rightarrow y = 2 \)[/tex]
- Coordinate: [tex]\( (0, 2) \)[/tex]
2. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Set [tex]\( y = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- Coordinate: [tex]\( (4, 0) \)[/tex]
3. Intersection of [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Coordinate: [tex]\( (0, 0) \)[/tex]
### Step 6: Conclusion
- The solution region is bounded (as it is restricted by the lines and does not extend infinitely).
- The coordinates of the corner points are:
[tex]\[ (0, 0), (0, 2), (4, 0) \][/tex]
So, to summarize:
- The solution region is: Bounded
- The coordinates of each corner point: [tex]\((0, 0)\)[/tex], [tex]\((0, 2)\)[/tex], [tex]\((4, 0)\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.