Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Solve the system graphically and indicate whether the solution region is bounded or unbounded. Find the coordinates of each corner point.

[tex]\[
\begin{array}{l}
x + 2y \leq 4 \\
x \geq 0 \\
y \geq 0
\end{array}
\][/tex]

Use the graphing tool to graph the system of inequalities.

The solution region is \_\_\_\_\_\_\_\_

What are the coordinates of each corner point? (Type an ordered pair. Use a comma to separate answers as needed.)

\_\_\_\_\_\_\_\_

Sagot :

To solve the system of inequalities graphically and determine whether the solution region is bounded or unbounded, follow these steps:

### Step 1: Understanding the Inequalities

We have the following system of inequalities:

1. [tex]\( x + 2 y \leq 4 \)[/tex]
2. [tex]\( x \geq 0 \)[/tex]
3. [tex]\( y \geq 0 \)[/tex]

### Step 2: Plotting the Boundary Lines

First, consider the equality for each inequality:

1. [tex]\( x + 2 y = 4 \)[/tex]
2. [tex]\( x = 0 \)[/tex]
3. [tex]\( y = 0 \)[/tex]

- [tex]\( x + 2 y = 4 \)[/tex]:

This is a straight line. We can find the intercepts:

- For [tex]\( x \)[/tex]-intercept ([tex]\(y = 0\)[/tex]):
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]

- For [tex]\( y \)[/tex]-intercept ([tex]\(x = 0\)[/tex]):
[tex]\( 0 + 2 y = 4 \Rightarrow 2 y = 4 \Rightarrow y = 2 \)[/tex]

So, the line passes through points [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 2) \)[/tex].

- [tex]\( x = 0 \)[/tex]:

This is the [tex]\( y \)[/tex]-axis.

- [tex]\( y = 0 \)[/tex]:

This is the [tex]\( x \)[/tex]-axis.

### Step 3: Shading the Regions

- For [tex]\( x + 2 y \leq 4 \)[/tex]: We shade the region below the line [tex]\( x + 2 y = 4 \)[/tex].

- For [tex]\( x \geq 0 \)[/tex]: We shade the region to the right of the [tex]\( y \)[/tex]-axis ([tex]\( x = 0 \)[/tex]).

- For [tex]\( y \geq 0 \)[/tex]: We shade the region above the [tex]\( x \)[/tex]-axis ([tex]\( y = 0 \)[/tex]).

### Step 4: Determining the Solution Region

The solution region is the intersection of all these shaded regions. The feasible region is bounded by the lines [tex]\( x + 2 y = 4 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( y = 0 \)[/tex].

### Step 5: Identifying the Corner Points

The corner points of the feasible solution region (where lines intersect) can be calculated:

1. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( x = 0 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( 0 + 2 y = 4 \Rightarrow y = 2 \)[/tex]
- Coordinate: [tex]\( (0, 2) \)[/tex]

2. Intersection of [tex]\( x + 2 y = 4 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Set [tex]\( y = 0 \)[/tex] in [tex]\( x + 2 y = 4 \)[/tex]:
[tex]\( x + 2(0) = 4 \Rightarrow x = 4 \)[/tex]
- Coordinate: [tex]\( (4, 0) \)[/tex]

3. Intersection of [tex]\( x = 0 \)[/tex] and [tex]\( y = 0 \)[/tex]:
- Coordinate: [tex]\( (0, 0) \)[/tex]

### Step 6: Conclusion

- The solution region is bounded (as it is restricted by the lines and does not extend infinitely).

- The coordinates of the corner points are:
[tex]\[ (0, 0), (0, 2), (4, 0) \][/tex]

So, to summarize:

- The solution region is: Bounded
- The coordinates of each corner point: [tex]\((0, 0)\)[/tex], [tex]\((0, 2)\)[/tex], [tex]\((4, 0)\)[/tex]