Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the vertical asymptotes of the rational function [tex]\( g(x) = \frac{x-3}{x(x+5)} \)[/tex], we need to determine where the denominator of the function is equal to zero, as these are the points where the function is undefined and potentially has vertical asymptotes.
The denominator of the function is [tex]\( x(x+5) \)[/tex]. We need to solve the equation:
[tex]\[ x(x + 5) = 0. \][/tex]
Solving for [tex]\( x \)[/tex]:
1. Set each factor in the denominator equal to zero:
[tex]\[ x = 0 \][/tex]
[tex]\[ x + 5 = 0 \][/tex]
2. Solving these equations, we get:
[tex]\[ x = 0 \][/tex]
[tex]\[ x = -5 \][/tex]
These values, [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex], are where the function [tex]\( g(x) \)[/tex] is undefined, indicating the locations of the vertical asymptotes.
Thus, the vertical asymptotes of the function [tex]\( g(x) = \frac{x-3}{x(x+5)} \)[/tex] are at:
[tex]\[ x = 0 \quad \text{and} \quad x = -5. \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex]
The denominator of the function is [tex]\( x(x+5) \)[/tex]. We need to solve the equation:
[tex]\[ x(x + 5) = 0. \][/tex]
Solving for [tex]\( x \)[/tex]:
1. Set each factor in the denominator equal to zero:
[tex]\[ x = 0 \][/tex]
[tex]\[ x + 5 = 0 \][/tex]
2. Solving these equations, we get:
[tex]\[ x = 0 \][/tex]
[tex]\[ x = -5 \][/tex]
These values, [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex], are where the function [tex]\( g(x) \)[/tex] is undefined, indicating the locations of the vertical asymptotes.
Thus, the vertical asymptotes of the function [tex]\( g(x) = \frac{x-3}{x(x+5)} \)[/tex] are at:
[tex]\[ x = 0 \quad \text{and} \quad x = -5. \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.