Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the vertical asymptotes of the rational function [tex]\( g(x) = \frac{x-3}{x(x+5)} \)[/tex], we need to determine where the denominator of the function is equal to zero, as these are the points where the function is undefined and potentially has vertical asymptotes.
The denominator of the function is [tex]\( x(x+5) \)[/tex]. We need to solve the equation:
[tex]\[ x(x + 5) = 0. \][/tex]
Solving for [tex]\( x \)[/tex]:
1. Set each factor in the denominator equal to zero:
[tex]\[ x = 0 \][/tex]
[tex]\[ x + 5 = 0 \][/tex]
2. Solving these equations, we get:
[tex]\[ x = 0 \][/tex]
[tex]\[ x = -5 \][/tex]
These values, [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex], are where the function [tex]\( g(x) \)[/tex] is undefined, indicating the locations of the vertical asymptotes.
Thus, the vertical asymptotes of the function [tex]\( g(x) = \frac{x-3}{x(x+5)} \)[/tex] are at:
[tex]\[ x = 0 \quad \text{and} \quad x = -5. \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex]
The denominator of the function is [tex]\( x(x+5) \)[/tex]. We need to solve the equation:
[tex]\[ x(x + 5) = 0. \][/tex]
Solving for [tex]\( x \)[/tex]:
1. Set each factor in the denominator equal to zero:
[tex]\[ x = 0 \][/tex]
[tex]\[ x + 5 = 0 \][/tex]
2. Solving these equations, we get:
[tex]\[ x = 0 \][/tex]
[tex]\[ x = -5 \][/tex]
These values, [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex], are where the function [tex]\( g(x) \)[/tex] is undefined, indicating the locations of the vertical asymptotes.
Thus, the vertical asymptotes of the function [tex]\( g(x) = \frac{x-3}{x(x+5)} \)[/tex] are at:
[tex]\[ x = 0 \quad \text{and} \quad x = -5. \][/tex]
Therefore, the correct answer is:
B. [tex]\( x = 0 \)[/tex] and [tex]\( x = -5 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.