Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the possible number of positive and negative real zeros for the function [tex]\( f(x) = x^7 + x^6 + x^2 + x + 3 \)[/tex] using Descartes's Rule of Signs, follow these steps:
### Step 1: Determine the number of sign changes in [tex]\( f(x) \)[/tex]
To find the number of positive real zeros, examine the signs of the coefficients in the polynomial's terms:
[tex]\[ f(x) = x^7 + x^6 + x^2 + x + 3 \][/tex]
The coefficients are [1, 1, 0, 1, 1, 0, 1, 3]. Observe these coefficients:
- 1 (positive)
- 1 (positive)
- 0 (no change in sign)
- 1 (positive)
- 1 (positive)
- 0 (no change in sign)
- 1 (positive)
- 3 (positive)
Since there are no sign changes among the coefficients, there are 0 positive real zeros.
### Step 2: Determine the number of sign changes in [tex]\( f(-x) \)[/tex]
To find the number of negative real zeros, substitute [tex]\( -x \)[/tex] for [tex]\( x \)[/tex] and then examine the signs of the coefficients:
[tex]\[ f(-x) = (-x)^7 + (-x)^6 + (-x)^2 + (-x) + 3 = -x^7 + x^6 + x^2 - x + 3 \][/tex]
So, the coefficients for [tex]\( f(-x) \)[/tex] are: [-1, 1, 0, -1, 1, 0, -1, 3]. Now, check the sign changes:
- -1 (negative)
- 1 (positive)
- 0 (no change in sign)
- -1 (negative)
- 1 (positive)
- 0 (no change in sign)
- -1 (negative)
- 3 (positive)
Count the sign changes:
1. From -1 to 1 (change of sign)
2. From 1 to -1 (change of sign)
3. From -1 to 1 (change of sign)
4. From 1 to -1 (change of sign)
5. From -1 to 3 (change of sign)
Thus, there are 5 sign changes in the coefficients of [tex]\( f(-x) \)[/tex].
### Step 3: Apply Descartes's Rule of Signs
According to Descartes's Rule of Signs:
- The number of positive real zeros is equal to the number of sign changes in [tex]\( f(x) \)[/tex] or less by an even integer.
- The number of negative real zeros is equal to the number of sign changes in [tex]\( f(-x) \)[/tex] or less by an even integer.
From our observations:
- There are 0 sign changes in [tex]\( f(x) \)[/tex], so there are 0 positive real zeros.
- There are 5 sign changes in [tex]\( f(-x) \)[/tex], which means the possible number of negative real zeros can be 5, 3, or 1 (since we subtract an even integer).
Out of the given answer choices, the correct one is:
D. 0 positive zeros, 3 or 1 negative zeros
### Step 1: Determine the number of sign changes in [tex]\( f(x) \)[/tex]
To find the number of positive real zeros, examine the signs of the coefficients in the polynomial's terms:
[tex]\[ f(x) = x^7 + x^6 + x^2 + x + 3 \][/tex]
The coefficients are [1, 1, 0, 1, 1, 0, 1, 3]. Observe these coefficients:
- 1 (positive)
- 1 (positive)
- 0 (no change in sign)
- 1 (positive)
- 1 (positive)
- 0 (no change in sign)
- 1 (positive)
- 3 (positive)
Since there are no sign changes among the coefficients, there are 0 positive real zeros.
### Step 2: Determine the number of sign changes in [tex]\( f(-x) \)[/tex]
To find the number of negative real zeros, substitute [tex]\( -x \)[/tex] for [tex]\( x \)[/tex] and then examine the signs of the coefficients:
[tex]\[ f(-x) = (-x)^7 + (-x)^6 + (-x)^2 + (-x) + 3 = -x^7 + x^6 + x^2 - x + 3 \][/tex]
So, the coefficients for [tex]\( f(-x) \)[/tex] are: [-1, 1, 0, -1, 1, 0, -1, 3]. Now, check the sign changes:
- -1 (negative)
- 1 (positive)
- 0 (no change in sign)
- -1 (negative)
- 1 (positive)
- 0 (no change in sign)
- -1 (negative)
- 3 (positive)
Count the sign changes:
1. From -1 to 1 (change of sign)
2. From 1 to -1 (change of sign)
3. From -1 to 1 (change of sign)
4. From 1 to -1 (change of sign)
5. From -1 to 3 (change of sign)
Thus, there are 5 sign changes in the coefficients of [tex]\( f(-x) \)[/tex].
### Step 3: Apply Descartes's Rule of Signs
According to Descartes's Rule of Signs:
- The number of positive real zeros is equal to the number of sign changes in [tex]\( f(x) \)[/tex] or less by an even integer.
- The number of negative real zeros is equal to the number of sign changes in [tex]\( f(-x) \)[/tex] or less by an even integer.
From our observations:
- There are 0 sign changes in [tex]\( f(x) \)[/tex], so there are 0 positive real zeros.
- There are 5 sign changes in [tex]\( f(-x) \)[/tex], which means the possible number of negative real zeros can be 5, 3, or 1 (since we subtract an even integer).
Out of the given answer choices, the correct one is:
D. 0 positive zeros, 3 or 1 negative zeros
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.