At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the quadratic equation [tex]\(x^2 - 6x + 4 = 0\)[/tex] by completing the square, follow these steps:
1. Start with the given equation:
[tex]\[ x^2 - 6x + 4 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 - 6x = -4 \][/tex]
3. Complete the square on the left side:
- Take half of the coefficient of [tex]\(x\)[/tex] (which is [tex]\(-6\)[/tex]), divide by 2, and square it:
[tex]\[ \left(\frac{-6}{2}\right)^2 = 9 \][/tex]
- Add and subtract this value to/from the left side:
[tex]\[ x^2 - 6x + 9 - 9 = -4 \][/tex]
- Rearrange the equation:
[tex]\[ (x - 3)^2 - 9 = -4 \][/tex]
4. Move the constant term [tex]\(-9\)[/tex] to the right side to isolate the square term:
[tex]\[ (x - 3)^2 = 5 \][/tex]
5. Take the square root of both sides:
[tex]\[ x - 3 = \pm \sqrt{5} \][/tex]
6. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 3 + \sqrt{5} \quad \text{or} \quad x = 3 - \sqrt{5} \][/tex]
So, the solutions for the quadratic equation [tex]\(x^2 - 6x + 4 = 0\)[/tex] are:
[tex]\[ x = 3 + \sqrt{5} \quad \text{and} \quad x = 3 - \sqrt{5} \][/tex]
1. Start with the given equation:
[tex]\[ x^2 - 6x + 4 = 0 \][/tex]
2. Move the constant term to the right side:
[tex]\[ x^2 - 6x = -4 \][/tex]
3. Complete the square on the left side:
- Take half of the coefficient of [tex]\(x\)[/tex] (which is [tex]\(-6\)[/tex]), divide by 2, and square it:
[tex]\[ \left(\frac{-6}{2}\right)^2 = 9 \][/tex]
- Add and subtract this value to/from the left side:
[tex]\[ x^2 - 6x + 9 - 9 = -4 \][/tex]
- Rearrange the equation:
[tex]\[ (x - 3)^2 - 9 = -4 \][/tex]
4. Move the constant term [tex]\(-9\)[/tex] to the right side to isolate the square term:
[tex]\[ (x - 3)^2 = 5 \][/tex]
5. Take the square root of both sides:
[tex]\[ x - 3 = \pm \sqrt{5} \][/tex]
6. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 3 + \sqrt{5} \quad \text{or} \quad x = 3 - \sqrt{5} \][/tex]
So, the solutions for the quadratic equation [tex]\(x^2 - 6x + 4 = 0\)[/tex] are:
[tex]\[ x = 3 + \sqrt{5} \quad \text{and} \quad x = 3 - \sqrt{5} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.