At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's divide the polynomial [tex]\( x^2 + 5x - 2 \)[/tex] by [tex]\( x + 2 \)[/tex] using synthetic division step-by-step.
1. Synthetic Division Setup:
- Write down the coefficients of the polynomial [tex]\( x^2 + 5x - 2 \)[/tex]: [1, 5, -2]
- Identify the root of the divisor [tex]\( x + 2 \)[/tex]. Since [tex]\( x + 2 = 0 \)[/tex] implies [tex]\( x = -2 \)[/tex], we use [tex]\(-2\)[/tex] as the root for synthetic division.
2. Synthetic Division Process:
- Set up the synthetic division table:
```
-2 | 1 5 -2
```
- Bring down the leading coefficient (1) directly below the line.
```
-2 | 1 5 -2
----
1
```
- Multiply this number (1) by the root ([tex]\(-2\)[/tex]) and write the result under the next coefficient (5):
[tex]\(-2 \times 1 = -2\)[/tex]
```
-2 | 1 5 -2
----
1 -2
```
- Add the number above (5) to this product (-2) and write the sum below the line:
[tex]\(5 + (-2) = 3\)[/tex]
```
-2 | 1 5 -2
----
1 3
```
- Repeat the multiplication and addition steps for the remaining terms:
[tex]\(-2 \times 3 = -6\)[/tex]
```
-2 | 1 5 -2
----
1 3 -6
```
[tex]\(-2 + (-6) = -8\)[/tex]
3. Result Interpretation:
- The numbers below the line ([tex]\(1\)[/tex] and [tex]\(3\)[/tex]) represent the coefficients of the quotient polynomial.
- The last number ([tex]\(-8\)[/tex]) is the remainder.
[tex]\[ \frac{x^2 + 5x - 2}{x + 2} = x + 3 + \frac{-8}{x + 2} \][/tex]
4. Formatting the Quotient and Remainder:
- Insert the remainder term correctly:
[tex]\[ \frac{x^2 + 5x - 2}{x + 2} = x + 3 - \frac{8}{x + 2} \][/tex]
Thus, the correct multiple choice answer is:
D. [tex]\( x + 3 - \frac{8}{x + 2} \)[/tex]
So, the answer is D.
1. Synthetic Division Setup:
- Write down the coefficients of the polynomial [tex]\( x^2 + 5x - 2 \)[/tex]: [1, 5, -2]
- Identify the root of the divisor [tex]\( x + 2 \)[/tex]. Since [tex]\( x + 2 = 0 \)[/tex] implies [tex]\( x = -2 \)[/tex], we use [tex]\(-2\)[/tex] as the root for synthetic division.
2. Synthetic Division Process:
- Set up the synthetic division table:
```
-2 | 1 5 -2
```
- Bring down the leading coefficient (1) directly below the line.
```
-2 | 1 5 -2
----
1
```
- Multiply this number (1) by the root ([tex]\(-2\)[/tex]) and write the result under the next coefficient (5):
[tex]\(-2 \times 1 = -2\)[/tex]
```
-2 | 1 5 -2
----
1 -2
```
- Add the number above (5) to this product (-2) and write the sum below the line:
[tex]\(5 + (-2) = 3\)[/tex]
```
-2 | 1 5 -2
----
1 3
```
- Repeat the multiplication and addition steps for the remaining terms:
[tex]\(-2 \times 3 = -6\)[/tex]
```
-2 | 1 5 -2
----
1 3 -6
```
[tex]\(-2 + (-6) = -8\)[/tex]
3. Result Interpretation:
- The numbers below the line ([tex]\(1\)[/tex] and [tex]\(3\)[/tex]) represent the coefficients of the quotient polynomial.
- The last number ([tex]\(-8\)[/tex]) is the remainder.
[tex]\[ \frac{x^2 + 5x - 2}{x + 2} = x + 3 + \frac{-8}{x + 2} \][/tex]
4. Formatting the Quotient and Remainder:
- Insert the remainder term correctly:
[tex]\[ \frac{x^2 + 5x - 2}{x + 2} = x + 3 - \frac{8}{x + 2} \][/tex]
Thus, the correct multiple choice answer is:
D. [tex]\( x + 3 - \frac{8}{x + 2} \)[/tex]
So, the answer is D.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.