Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! To find the concentration of the chemist's working solution, we will use the principle of dilution, which is summarized by the formula:
[tex]\[ C_1 V_1 = C_2 V_2 \][/tex]
Where:
- [tex]\( C_1 \)[/tex] is the initial concentration of the stock solution.
- [tex]\( V_1 \)[/tex] is the volume of the stock solution used.
- [tex]\( C_2 \)[/tex] is the concentration of the working (diluted) solution.
- [tex]\( V_2 \)[/tex] is the final volume of the working solution.
Given data:
- Initial concentration ([tex]\( C_1 \)[/tex]) = 0.246 M
- Volume of stock solution ([tex]\( V_1 \)[/tex]) = 50.0 mL
- Final volume of the working solution ([tex]\( V_2 \)[/tex]) = 980.0 mL
We need to find the final concentration ([tex]\( C_2 \)[/tex]) of the working solution.
The formula to calculate the final concentration ([tex]\( C_2 \)[/tex]) is rearranged as follows:
[tex]\[ C_2 = \frac{C_1 V_1}{V_2} \][/tex]
Substitute the given values into the equation:
[tex]\[ C_2 = \frac{0.246 \, \text{M} \times 50.0 \, \text{mL}}{980.0 \, \text{mL}} \][/tex]
After performing the calculation:
[tex]\[ C_2 = \frac{12.3 \, \text{mL} \cdot \text{M}}{980.0 \, \text{mL}} \][/tex]
[tex]\[ C_2 \approx 0.012551 \, \text{M} \][/tex]
Rounding this result to 3 significant digits, we get:
[tex]\[ C_2 \approx 0.013 \, \text{M} \][/tex]
Therefore, the concentration of the chemist's working solution is:
[tex]\[ \boxed{0.013} \, \text{M} \][/tex]
[tex]\[ C_1 V_1 = C_2 V_2 \][/tex]
Where:
- [tex]\( C_1 \)[/tex] is the initial concentration of the stock solution.
- [tex]\( V_1 \)[/tex] is the volume of the stock solution used.
- [tex]\( C_2 \)[/tex] is the concentration of the working (diluted) solution.
- [tex]\( V_2 \)[/tex] is the final volume of the working solution.
Given data:
- Initial concentration ([tex]\( C_1 \)[/tex]) = 0.246 M
- Volume of stock solution ([tex]\( V_1 \)[/tex]) = 50.0 mL
- Final volume of the working solution ([tex]\( V_2 \)[/tex]) = 980.0 mL
We need to find the final concentration ([tex]\( C_2 \)[/tex]) of the working solution.
The formula to calculate the final concentration ([tex]\( C_2 \)[/tex]) is rearranged as follows:
[tex]\[ C_2 = \frac{C_1 V_1}{V_2} \][/tex]
Substitute the given values into the equation:
[tex]\[ C_2 = \frac{0.246 \, \text{M} \times 50.0 \, \text{mL}}{980.0 \, \text{mL}} \][/tex]
After performing the calculation:
[tex]\[ C_2 = \frac{12.3 \, \text{mL} \cdot \text{M}}{980.0 \, \text{mL}} \][/tex]
[tex]\[ C_2 \approx 0.012551 \, \text{M} \][/tex]
Rounding this result to 3 significant digits, we get:
[tex]\[ C_2 \approx 0.013 \, \text{M} \][/tex]
Therefore, the concentration of the chemist's working solution is:
[tex]\[ \boxed{0.013} \, \text{M} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.