Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! To find the concentration of the chemist's working solution, we will use the principle of dilution, which is summarized by the formula:
[tex]\[ C_1 V_1 = C_2 V_2 \][/tex]
Where:
- [tex]\( C_1 \)[/tex] is the initial concentration of the stock solution.
- [tex]\( V_1 \)[/tex] is the volume of the stock solution used.
- [tex]\( C_2 \)[/tex] is the concentration of the working (diluted) solution.
- [tex]\( V_2 \)[/tex] is the final volume of the working solution.
Given data:
- Initial concentration ([tex]\( C_1 \)[/tex]) = 0.246 M
- Volume of stock solution ([tex]\( V_1 \)[/tex]) = 50.0 mL
- Final volume of the working solution ([tex]\( V_2 \)[/tex]) = 980.0 mL
We need to find the final concentration ([tex]\( C_2 \)[/tex]) of the working solution.
The formula to calculate the final concentration ([tex]\( C_2 \)[/tex]) is rearranged as follows:
[tex]\[ C_2 = \frac{C_1 V_1}{V_2} \][/tex]
Substitute the given values into the equation:
[tex]\[ C_2 = \frac{0.246 \, \text{M} \times 50.0 \, \text{mL}}{980.0 \, \text{mL}} \][/tex]
After performing the calculation:
[tex]\[ C_2 = \frac{12.3 \, \text{mL} \cdot \text{M}}{980.0 \, \text{mL}} \][/tex]
[tex]\[ C_2 \approx 0.012551 \, \text{M} \][/tex]
Rounding this result to 3 significant digits, we get:
[tex]\[ C_2 \approx 0.013 \, \text{M} \][/tex]
Therefore, the concentration of the chemist's working solution is:
[tex]\[ \boxed{0.013} \, \text{M} \][/tex]
[tex]\[ C_1 V_1 = C_2 V_2 \][/tex]
Where:
- [tex]\( C_1 \)[/tex] is the initial concentration of the stock solution.
- [tex]\( V_1 \)[/tex] is the volume of the stock solution used.
- [tex]\( C_2 \)[/tex] is the concentration of the working (diluted) solution.
- [tex]\( V_2 \)[/tex] is the final volume of the working solution.
Given data:
- Initial concentration ([tex]\( C_1 \)[/tex]) = 0.246 M
- Volume of stock solution ([tex]\( V_1 \)[/tex]) = 50.0 mL
- Final volume of the working solution ([tex]\( V_2 \)[/tex]) = 980.0 mL
We need to find the final concentration ([tex]\( C_2 \)[/tex]) of the working solution.
The formula to calculate the final concentration ([tex]\( C_2 \)[/tex]) is rearranged as follows:
[tex]\[ C_2 = \frac{C_1 V_1}{V_2} \][/tex]
Substitute the given values into the equation:
[tex]\[ C_2 = \frac{0.246 \, \text{M} \times 50.0 \, \text{mL}}{980.0 \, \text{mL}} \][/tex]
After performing the calculation:
[tex]\[ C_2 = \frac{12.3 \, \text{mL} \cdot \text{M}}{980.0 \, \text{mL}} \][/tex]
[tex]\[ C_2 \approx 0.012551 \, \text{M} \][/tex]
Rounding this result to 3 significant digits, we get:
[tex]\[ C_2 \approx 0.013 \, \text{M} \][/tex]
Therefore, the concentration of the chemist's working solution is:
[tex]\[ \boxed{0.013} \, \text{M} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.