Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(5x^2 + 1 = 51\)[/tex] by finding square roots, follow these steps:
1. Isolate the quadratic term:
[tex]\[ 5x^2 + 1 = 51 \][/tex]
Subtract 1 from both sides to isolate the term with [tex]\(x^2\)[/tex]:
[tex]\[ 5x^2 + 1 - 1 = 51 - 1 \implies 5x^2 = 50 \][/tex]
2. Solve for [tex]\(x^2\)[/tex]:
Divide both sides of the equation by 5 to solve for [tex]\(x^2\)[/tex]:
[tex]\[ x^2 = \frac{50}{5} \implies x^2 = 10 \][/tex]
3. Take the square root of both sides:
Find the square roots to solve for [tex]\(x\)[/tex]. There are two possible solutions, the positive and the negative square roots:
[tex]\[ x = \sqrt{10} \quad \text{and} \quad x = -\sqrt{10} \][/tex]
So, the solutions to the equation [tex]\(5x^2 + 1 = 51\)[/tex] are:
[tex]\[ x = \sqrt{10} \approx 3.1622776601683795 \quad \text{and} \quad x = -\sqrt{10} \approx -3.1622776601683795 \][/tex]
Thus, the correct option from the given choices is [tex]\(x = \sqrt{10}, -\sqrt{10}\)[/tex].
1. Isolate the quadratic term:
[tex]\[ 5x^2 + 1 = 51 \][/tex]
Subtract 1 from both sides to isolate the term with [tex]\(x^2\)[/tex]:
[tex]\[ 5x^2 + 1 - 1 = 51 - 1 \implies 5x^2 = 50 \][/tex]
2. Solve for [tex]\(x^2\)[/tex]:
Divide both sides of the equation by 5 to solve for [tex]\(x^2\)[/tex]:
[tex]\[ x^2 = \frac{50}{5} \implies x^2 = 10 \][/tex]
3. Take the square root of both sides:
Find the square roots to solve for [tex]\(x\)[/tex]. There are two possible solutions, the positive and the negative square roots:
[tex]\[ x = \sqrt{10} \quad \text{and} \quad x = -\sqrt{10} \][/tex]
So, the solutions to the equation [tex]\(5x^2 + 1 = 51\)[/tex] are:
[tex]\[ x = \sqrt{10} \approx 3.1622776601683795 \quad \text{and} \quad x = -\sqrt{10} \approx -3.1622776601683795 \][/tex]
Thus, the correct option from the given choices is [tex]\(x = \sqrt{10}, -\sqrt{10}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.