Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(5x^2 + 1 = 51\)[/tex] by finding square roots, follow these steps:
1. Isolate the quadratic term:
[tex]\[ 5x^2 + 1 = 51 \][/tex]
Subtract 1 from both sides to isolate the term with [tex]\(x^2\)[/tex]:
[tex]\[ 5x^2 + 1 - 1 = 51 - 1 \implies 5x^2 = 50 \][/tex]
2. Solve for [tex]\(x^2\)[/tex]:
Divide both sides of the equation by 5 to solve for [tex]\(x^2\)[/tex]:
[tex]\[ x^2 = \frac{50}{5} \implies x^2 = 10 \][/tex]
3. Take the square root of both sides:
Find the square roots to solve for [tex]\(x\)[/tex]. There are two possible solutions, the positive and the negative square roots:
[tex]\[ x = \sqrt{10} \quad \text{and} \quad x = -\sqrt{10} \][/tex]
So, the solutions to the equation [tex]\(5x^2 + 1 = 51\)[/tex] are:
[tex]\[ x = \sqrt{10} \approx 3.1622776601683795 \quad \text{and} \quad x = -\sqrt{10} \approx -3.1622776601683795 \][/tex]
Thus, the correct option from the given choices is [tex]\(x = \sqrt{10}, -\sqrt{10}\)[/tex].
1. Isolate the quadratic term:
[tex]\[ 5x^2 + 1 = 51 \][/tex]
Subtract 1 from both sides to isolate the term with [tex]\(x^2\)[/tex]:
[tex]\[ 5x^2 + 1 - 1 = 51 - 1 \implies 5x^2 = 50 \][/tex]
2. Solve for [tex]\(x^2\)[/tex]:
Divide both sides of the equation by 5 to solve for [tex]\(x^2\)[/tex]:
[tex]\[ x^2 = \frac{50}{5} \implies x^2 = 10 \][/tex]
3. Take the square root of both sides:
Find the square roots to solve for [tex]\(x\)[/tex]. There are two possible solutions, the positive and the negative square roots:
[tex]\[ x = \sqrt{10} \quad \text{and} \quad x = -\sqrt{10} \][/tex]
So, the solutions to the equation [tex]\(5x^2 + 1 = 51\)[/tex] are:
[tex]\[ x = \sqrt{10} \approx 3.1622776601683795 \quad \text{and} \quad x = -\sqrt{10} \approx -3.1622776601683795 \][/tex]
Thus, the correct option from the given choices is [tex]\(x = \sqrt{10}, -\sqrt{10}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.