Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's approach the problem step-by-step.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.