Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's approach the problem step-by-step.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.