Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's approach the problem step-by-step.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.