Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's approach the problem step-by-step.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Step 1: Calculate the molar conductivity
The molar conductivity [tex]\(\Lambda_m\)[/tex] is given by the formula:
[tex]\[ \Lambda_m = \frac{\kappa}{c} \times 1000 \][/tex]
where:
- [tex]\(\kappa\)[/tex] is the conductivity of the solution ([tex]\(2.48 \times 10^{-2} S \, cm^{-1}\)[/tex])
- [tex]\(c\)[/tex] is the concentration (0.2 M)
- 1000 is the factor to convert from [tex]\(S \, cm^{-1}\)[/tex] to [tex]\(S \, cm^2 \, mol^{-1}\)[/tex]
Plug in the given values:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 \][/tex]
Simplify the expression:
[tex]\[ \Lambda_m = \frac{2.48 \times 10^{-2}}{0.2} \times 1000 = 0.124 \times 1000 = 124.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the molar conductivity of the solution is [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 2: Calculate the theoretical molar conductivity at infinite dilution
The theoretical molar conductivity at infinite dilution [tex]\(\Lambda_m^0\)[/tex] can be calculated by summing the individual ionic conductivities at infinite dilution for [tex]\(K^+\)[/tex] and [tex]\(Cl^-\)[/tex]:
[tex]\[ \Lambda_m^0 = \lambda_{ K ^{+}}^{ o } + \lambda_{ Cl ^{- }}^{ o } \][/tex]
Given:
[tex]\[ \lambda_{ K ^{+}}^o = 73.5 \, S \, cm^2 \, mol^{-1} \][/tex]
[tex]\[ \lambda_{ Cl ^{- }}^o = 76.5 \, S \, cm^2 \, mol^{-1} \][/tex]
Add these two values:
[tex]\[ \Lambda_m^0 = 73.5 + 76.5 = 150.0 \, S \, cm^2 \, mol^{-1} \][/tex]
So, the theoretical molar conductivity at infinite dilution is [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex].
Step 3: Calculate the degree of dissociation ([tex]\(\alpha\)[/tex])
The degree of dissociation [tex]\(\alpha\)[/tex] can be calculated using the formula:
[tex]\[ \alpha = \frac{\Lambda_m}{\Lambda_m^0} \][/tex]
Plug in the values for [tex]\(\Lambda_m\)[/tex] and [tex]\(\Lambda_m^0\)[/tex]:
[tex]\[ \alpha = \frac{124.0}{150.0} \][/tex]
Simplify the fraction:
[tex]\[ \alpha = 0.8267 \][/tex]
So, the degree of dissociation is approximately [tex]\(0.827\)[/tex] (or [tex]\(82.7\%\)[/tex]).
Summary:
1. Molar conductivity ([tex]\(\Lambda_m\)[/tex]): [tex]\(124.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
2. Theoretical molar conductivity at infinite dilution ([tex]\(\Lambda_m^0\)[/tex]): [tex]\(150.0 \, S \, cm^2 \, mol^{-1}\)[/tex]
3. Degree of dissociation ([tex]\(\alpha\)[/tex]): [tex]\(0.827\)[/tex] or [tex]\(82.7\%\)[/tex]
These are the calculated values based on the given information.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.