Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! To determine how many different four-letter permutations can be formed using letters out of the first twelve letters in the alphabet, we will use the permutation formula given by:
[tex]\[ _nP_r = \frac{n!}{(n-r)!} \][/tex]
Here, [tex]\( n \)[/tex] represents the total number of items to choose from, and [tex]\( r \)[/tex] represents the number of items to arrange.
Step-by-Step Solution:
1. Identify the values for [tex]\( n \)[/tex] and [tex]\( r \)[/tex]:
- [tex]\( n = 12 \)[/tex] (since we are choosing from the first twelve letters of the alphabet)
- [tex]\( r = 4 \)[/tex] (since we want to form four-letter permutations)
2. Substitute the values into the permutation formula:
[tex]\[ _nP_r = \frac{12!}{(12-4)!} = \frac{12!}{8!} \][/tex]
3. Calculate the factorials:
[tex]\[ 12! = 12 \times 11 \times 10 \times 9 \times 8! \][/tex]
Notice that [tex]\( 8! \)[/tex] in the numerator and denominator cancel out, simplifying the expression to:
[tex]\[ \frac{12 \times 11 \times 10 \times 9 \times 8!}{8!} = 12 \times 11 \times 10 \times 9 \][/tex]
4. Compute the multiplication:
[tex]\[ 12 \times 11 = 132 \][/tex]
[tex]\[ 132 \times 10 = 1320 \][/tex]
[tex]\[ 1320 \times 9 = 11880 \][/tex]
So, the number of different four-letter permutations that can be formed using any four letters out of the first twelve letters in the alphabet is:
[tex]\[ \boxed{11880} \][/tex]
[tex]\[ _nP_r = \frac{n!}{(n-r)!} \][/tex]
Here, [tex]\( n \)[/tex] represents the total number of items to choose from, and [tex]\( r \)[/tex] represents the number of items to arrange.
Step-by-Step Solution:
1. Identify the values for [tex]\( n \)[/tex] and [tex]\( r \)[/tex]:
- [tex]\( n = 12 \)[/tex] (since we are choosing from the first twelve letters of the alphabet)
- [tex]\( r = 4 \)[/tex] (since we want to form four-letter permutations)
2. Substitute the values into the permutation formula:
[tex]\[ _nP_r = \frac{12!}{(12-4)!} = \frac{12!}{8!} \][/tex]
3. Calculate the factorials:
[tex]\[ 12! = 12 \times 11 \times 10 \times 9 \times 8! \][/tex]
Notice that [tex]\( 8! \)[/tex] in the numerator and denominator cancel out, simplifying the expression to:
[tex]\[ \frac{12 \times 11 \times 10 \times 9 \times 8!}{8!} = 12 \times 11 \times 10 \times 9 \][/tex]
4. Compute the multiplication:
[tex]\[ 12 \times 11 = 132 \][/tex]
[tex]\[ 132 \times 10 = 1320 \][/tex]
[tex]\[ 1320 \times 9 = 11880 \][/tex]
So, the number of different four-letter permutations that can be formed using any four letters out of the first twelve letters in the alphabet is:
[tex]\[ \boxed{11880} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.