Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve this step-by-step.
We start with the equation of the circle given in the standard form:
[tex]\[ (x - 5)^2 + y^2 = 81 \][/tex]
The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
By comparing the given equation [tex]\((x - 5)^2 + y^2 = 81\)[/tex] with the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can identify the following:
1. The term [tex]\((x - 5)^2\)[/tex] tells us that [tex]\(h = 5\)[/tex].
2. The term [tex]\(y^2\)[/tex] can be rewritten as [tex]\((y - 0)^2\)[/tex], which tells us that [tex]\(k = 0\)[/tex].
3. The right-hand side of the equation is [tex]\(81\)[/tex], which equals [tex]\(r^2\)[/tex]. Therefore, [tex]\(r^2 = 81\)[/tex].
To find the radius [tex]\(r\)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{81} \][/tex]
Solving this, we get:
[tex]\[ r = 9 \][/tex]
Therefore, the radius of the circle is 9 units, and the center of the circle is at [tex]\((5, 0)\)[/tex].
Putting this information into the given format:
The radius of the circle is [tex]\(9\)[/tex] units.
The center of the circle is at [tex]\((5, 0)\)[/tex].
We start with the equation of the circle given in the standard form:
[tex]\[ (x - 5)^2 + y^2 = 81 \][/tex]
The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
By comparing the given equation [tex]\((x - 5)^2 + y^2 = 81\)[/tex] with the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can identify the following:
1. The term [tex]\((x - 5)^2\)[/tex] tells us that [tex]\(h = 5\)[/tex].
2. The term [tex]\(y^2\)[/tex] can be rewritten as [tex]\((y - 0)^2\)[/tex], which tells us that [tex]\(k = 0\)[/tex].
3. The right-hand side of the equation is [tex]\(81\)[/tex], which equals [tex]\(r^2\)[/tex]. Therefore, [tex]\(r^2 = 81\)[/tex].
To find the radius [tex]\(r\)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{81} \][/tex]
Solving this, we get:
[tex]\[ r = 9 \][/tex]
Therefore, the radius of the circle is 9 units, and the center of the circle is at [tex]\((5, 0)\)[/tex].
Putting this information into the given format:
The radius of the circle is [tex]\(9\)[/tex] units.
The center of the circle is at [tex]\((5, 0)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.