Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Daisy measured the heights of 20 plants. The table gives some information about the heights [tex]\((h \text{ in cm})\)[/tex] of the plants.

\begin{tabular}{|c|c|}
\hline Height of plants [tex]\((h)\)[/tex] & Frequency \\
\hline [tex]\(0 \leqslant h \ \textless \ 10\)[/tex] & 1 \\
\hline [tex]\(10 \leqslant h \ \textless \ 20\)[/tex] & 4 \\
\hline [tex]\(20 \leqslant h \ \textless \ 30\)[/tex] & 7 \\
\hline [tex]\(30 \leqslant h \ \textless \ 40\)[/tex] & 2 \\
\hline [tex]\(40 \leqslant h \ \textless \ 50\)[/tex] & 3 \\
\hline [tex]\(50 \leqslant h \ \textless \ 60\)[/tex] & 3 \\
\hline
\end{tabular}

By using the midpoints of each group, work out an estimate for the mean height of a plant.

Answer: [tex]\(\_\_\_\_\_\_\_\_\_ \text{ cm}\)[/tex]


Sagot :

To find an estimate for the mean height of the plants, we will follow these steps:

1. Identify the height intervals and their respective frequencies:
- [tex]\(0 \leqslant h < 10\)[/tex]: Frequency = 1
- [tex]\(10 \leqslant h < 20\)[/tex]: Frequency = 4
- [tex]\(20 \leqslant h < 30\)[/tex]: Frequency = 7
- [tex]\(30 \leqslant h < 40\)[/tex]: Frequency = 2
- [tex]\(40 \leqslant h < 50\)[/tex]: Frequency = 3
- [tex]\(50 \leqslant h < 60\)[/tex]: Frequency = 3

2. Calculate the midpoints of each height interval. The midpoint of an interval is found by averaging the lower and upper bounds of the interval.
- Midpoint of [tex]\(0 \leqslant h < 10\)[/tex]: [tex]\(\frac{0 + 10}{2} = 5\)[/tex]
- Midpoint of [tex]\(10 \leqslant h < 20\)[/tex]: [tex]\(\frac{10 + 20}{2} = 15\)[/tex]
- Midpoint of [tex]\(20 \leqslant h < 30\)[/tex]: [tex]\(\frac{20 + 30}{2} = 25\)[/tex]
- Midpoint of [tex]\(30 \leqslant h < 40\)[/tex]: [tex]\(\frac{30 + 40}{2} = 35\)[/tex]
- Midpoint of [tex]\(40 \leqslant h < 50\)[/tex]: [tex]\(\frac{40 + 50}{2} = 45\)[/tex]
- Midpoint of [tex]\(50 \leqslant h < 60\)[/tex]: [tex]\(\frac{50 + 60}{2} = 55\)[/tex]

So, the midpoints are: [tex]\(5, 15, 25, 35, 45, 55\)[/tex]

3. Multiply each midpoint by its corresponding frequency and find the total of these products.
- [tex]\(5 \times 1 = 5\)[/tex]
- [tex]\(15 \times 4 = 60\)[/tex]
- [tex]\(25 \times 7 = 175\)[/tex]
- [tex]\(35 \times 2 = 70\)[/tex]
- [tex]\(45 \times 3 = 135\)[/tex]
- [tex]\(55 \times 3 = 165\)[/tex]

The sum of these products is:
[tex]\[ 5 + 60 + 175 + 70 + 135 + 165 = 610 \][/tex]

4. Find the total frequency:
[tex]\[ 1 + 4 + 7 + 2 + 3 + 3 = 20 \][/tex]

5. Estimate the mean height: The mean is calculated by dividing the total of the products by the total frequency.
[tex]\[ \text{Mean height} = \frac{\text{Total of the products}}{\text{Total frequency}} = \frac{610}{20} = 30.5 \][/tex]

Therefore, the estimated mean height of the plants is 30.5 cm.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.