At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the pH of the resulting buffer when 500.0 mL of 0.180 M NaOH is mixed with 555 mL of 0.200 M weak acid (with [tex]\( K_{\text{a}} = 7.22 \times 10^{-5} \)[/tex]), we follow these steps:
1. Convert Volumes to Liters:
- Volume of NaOH: [tex]\( 500.0 \, \text{mL} = 0.500 \, \text{L} \)[/tex]
- Volume of Weak Acid (HA): [tex]\( 555 \, \text{mL} = 0.555 \, \text{L} \)[/tex]
2. Calculate Initial Moles:
- Moles of NaOH ([tex]\( \text{OH}^- \)[/tex]): [tex]\( 0.500 \, \text{L} \times 0.180 \, \text{M} = 0.090 \, \text{moles} \)[/tex]
- Moles of Weak Acid ([tex]\( \text{HA} \)[/tex]): [tex]\( 0.555 \, \text{L} \times 0.200 \, \text{M} = 0.1110 \, \text{moles} \)[/tex]
3. Reaction Stoichiometry:
[tex]\[ \text{HA} (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) + \text{A}^- (aq) \][/tex]
- NaOH completely dissociates and reacts with the weak acid.
- Moles of conjugate base ([tex]\( \text{A}^- \)[/tex]) formed is equal to the moles of [tex]\( \text{OH}^- \)[/tex], which is [tex]\( 0.090 \, \text{moles} \)[/tex].
- Moles of HA remaining: [tex]\( 0.1110 \, \text{moles} - 0.090 \, \text{moles} = 0.0210 \, \text{moles} \)[/tex]
4. Total Volume of the Solution:
[tex]\[ 0.500 \, \text{L} + 0.555 \, \text{L} = 1.055 \, \text{L} \][/tex]
5. Concentrations in the Final Solution:
- Concentration of [tex]\( \text{HA} \)[/tex]: [tex]\( \frac{0.0210 \, \text{moles}}{1.055 \, \text{L}} = 0.0199 \, \text{M} \)[/tex]
- Concentration of [tex]\( \text{A}^- \)[/tex]: [tex]\( \frac{0.090 \, \text{moles}}{1.055 \, \text{L}} = 0.0853 \, \text{M} \)[/tex]
6. Calculate [tex]\( \text{pK}_\text{a} \)[/tex]:
[tex]\[ \text{pK}_\text{a} = -\log_{10}(K_\text{a}) = -\log_{10}(7.22 \times 10^{-5}) = 4.14 \][/tex]
7. Use the Henderson-Hasselbalch Equation:
[tex]\[ \text{pH} = \text{pK}_\text{a} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
Substitute the values:
[tex]\[ \text{pH} = 4.14 + \log_{10} \left( \frac{0.0853}{0.0199} \right) \][/tex]
8. Calculate the pH:
[tex]\[ \log_{10} \left( \frac{0.0853}{0.0199} \right) = \log_{10}(4.29) = 0.633 \][/tex]
[tex]\[ \text{pH} = 4.14 + 0.633 = 4.773 \][/tex]
Thus, the pH of the resulting buffer is [tex]\(\boxed{4.77}\)[/tex].
1. Convert Volumes to Liters:
- Volume of NaOH: [tex]\( 500.0 \, \text{mL} = 0.500 \, \text{L} \)[/tex]
- Volume of Weak Acid (HA): [tex]\( 555 \, \text{mL} = 0.555 \, \text{L} \)[/tex]
2. Calculate Initial Moles:
- Moles of NaOH ([tex]\( \text{OH}^- \)[/tex]): [tex]\( 0.500 \, \text{L} \times 0.180 \, \text{M} = 0.090 \, \text{moles} \)[/tex]
- Moles of Weak Acid ([tex]\( \text{HA} \)[/tex]): [tex]\( 0.555 \, \text{L} \times 0.200 \, \text{M} = 0.1110 \, \text{moles} \)[/tex]
3. Reaction Stoichiometry:
[tex]\[ \text{HA} (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) + \text{A}^- (aq) \][/tex]
- NaOH completely dissociates and reacts with the weak acid.
- Moles of conjugate base ([tex]\( \text{A}^- \)[/tex]) formed is equal to the moles of [tex]\( \text{OH}^- \)[/tex], which is [tex]\( 0.090 \, \text{moles} \)[/tex].
- Moles of HA remaining: [tex]\( 0.1110 \, \text{moles} - 0.090 \, \text{moles} = 0.0210 \, \text{moles} \)[/tex]
4. Total Volume of the Solution:
[tex]\[ 0.500 \, \text{L} + 0.555 \, \text{L} = 1.055 \, \text{L} \][/tex]
5. Concentrations in the Final Solution:
- Concentration of [tex]\( \text{HA} \)[/tex]: [tex]\( \frac{0.0210 \, \text{moles}}{1.055 \, \text{L}} = 0.0199 \, \text{M} \)[/tex]
- Concentration of [tex]\( \text{A}^- \)[/tex]: [tex]\( \frac{0.090 \, \text{moles}}{1.055 \, \text{L}} = 0.0853 \, \text{M} \)[/tex]
6. Calculate [tex]\( \text{pK}_\text{a} \)[/tex]:
[tex]\[ \text{pK}_\text{a} = -\log_{10}(K_\text{a}) = -\log_{10}(7.22 \times 10^{-5}) = 4.14 \][/tex]
7. Use the Henderson-Hasselbalch Equation:
[tex]\[ \text{pH} = \text{pK}_\text{a} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
Substitute the values:
[tex]\[ \text{pH} = 4.14 + \log_{10} \left( \frac{0.0853}{0.0199} \right) \][/tex]
8. Calculate the pH:
[tex]\[ \log_{10} \left( \frac{0.0853}{0.0199} \right) = \log_{10}(4.29) = 0.633 \][/tex]
[tex]\[ \text{pH} = 4.14 + 0.633 = 4.773 \][/tex]
Thus, the pH of the resulting buffer is [tex]\(\boxed{4.77}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.