Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the pH of the resulting buffer when 500.0 mL of 0.180 M NaOH is mixed with 555 mL of 0.200 M weak acid (with [tex]\( K_{\text{a}} = 7.22 \times 10^{-5} \)[/tex]), we follow these steps:
1. Convert Volumes to Liters:
- Volume of NaOH: [tex]\( 500.0 \, \text{mL} = 0.500 \, \text{L} \)[/tex]
- Volume of Weak Acid (HA): [tex]\( 555 \, \text{mL} = 0.555 \, \text{L} \)[/tex]
2. Calculate Initial Moles:
- Moles of NaOH ([tex]\( \text{OH}^- \)[/tex]): [tex]\( 0.500 \, \text{L} \times 0.180 \, \text{M} = 0.090 \, \text{moles} \)[/tex]
- Moles of Weak Acid ([tex]\( \text{HA} \)[/tex]): [tex]\( 0.555 \, \text{L} \times 0.200 \, \text{M} = 0.1110 \, \text{moles} \)[/tex]
3. Reaction Stoichiometry:
[tex]\[ \text{HA} (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) + \text{A}^- (aq) \][/tex]
- NaOH completely dissociates and reacts with the weak acid.
- Moles of conjugate base ([tex]\( \text{A}^- \)[/tex]) formed is equal to the moles of [tex]\( \text{OH}^- \)[/tex], which is [tex]\( 0.090 \, \text{moles} \)[/tex].
- Moles of HA remaining: [tex]\( 0.1110 \, \text{moles} - 0.090 \, \text{moles} = 0.0210 \, \text{moles} \)[/tex]
4. Total Volume of the Solution:
[tex]\[ 0.500 \, \text{L} + 0.555 \, \text{L} = 1.055 \, \text{L} \][/tex]
5. Concentrations in the Final Solution:
- Concentration of [tex]\( \text{HA} \)[/tex]: [tex]\( \frac{0.0210 \, \text{moles}}{1.055 \, \text{L}} = 0.0199 \, \text{M} \)[/tex]
- Concentration of [tex]\( \text{A}^- \)[/tex]: [tex]\( \frac{0.090 \, \text{moles}}{1.055 \, \text{L}} = 0.0853 \, \text{M} \)[/tex]
6. Calculate [tex]\( \text{pK}_\text{a} \)[/tex]:
[tex]\[ \text{pK}_\text{a} = -\log_{10}(K_\text{a}) = -\log_{10}(7.22 \times 10^{-5}) = 4.14 \][/tex]
7. Use the Henderson-Hasselbalch Equation:
[tex]\[ \text{pH} = \text{pK}_\text{a} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
Substitute the values:
[tex]\[ \text{pH} = 4.14 + \log_{10} \left( \frac{0.0853}{0.0199} \right) \][/tex]
8. Calculate the pH:
[tex]\[ \log_{10} \left( \frac{0.0853}{0.0199} \right) = \log_{10}(4.29) = 0.633 \][/tex]
[tex]\[ \text{pH} = 4.14 + 0.633 = 4.773 \][/tex]
Thus, the pH of the resulting buffer is [tex]\(\boxed{4.77}\)[/tex].
1. Convert Volumes to Liters:
- Volume of NaOH: [tex]\( 500.0 \, \text{mL} = 0.500 \, \text{L} \)[/tex]
- Volume of Weak Acid (HA): [tex]\( 555 \, \text{mL} = 0.555 \, \text{L} \)[/tex]
2. Calculate Initial Moles:
- Moles of NaOH ([tex]\( \text{OH}^- \)[/tex]): [tex]\( 0.500 \, \text{L} \times 0.180 \, \text{M} = 0.090 \, \text{moles} \)[/tex]
- Moles of Weak Acid ([tex]\( \text{HA} \)[/tex]): [tex]\( 0.555 \, \text{L} \times 0.200 \, \text{M} = 0.1110 \, \text{moles} \)[/tex]
3. Reaction Stoichiometry:
[tex]\[ \text{HA} (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) + \text{A}^- (aq) \][/tex]
- NaOH completely dissociates and reacts with the weak acid.
- Moles of conjugate base ([tex]\( \text{A}^- \)[/tex]) formed is equal to the moles of [tex]\( \text{OH}^- \)[/tex], which is [tex]\( 0.090 \, \text{moles} \)[/tex].
- Moles of HA remaining: [tex]\( 0.1110 \, \text{moles} - 0.090 \, \text{moles} = 0.0210 \, \text{moles} \)[/tex]
4. Total Volume of the Solution:
[tex]\[ 0.500 \, \text{L} + 0.555 \, \text{L} = 1.055 \, \text{L} \][/tex]
5. Concentrations in the Final Solution:
- Concentration of [tex]\( \text{HA} \)[/tex]: [tex]\( \frac{0.0210 \, \text{moles}}{1.055 \, \text{L}} = 0.0199 \, \text{M} \)[/tex]
- Concentration of [tex]\( \text{A}^- \)[/tex]: [tex]\( \frac{0.090 \, \text{moles}}{1.055 \, \text{L}} = 0.0853 \, \text{M} \)[/tex]
6. Calculate [tex]\( \text{pK}_\text{a} \)[/tex]:
[tex]\[ \text{pK}_\text{a} = -\log_{10}(K_\text{a}) = -\log_{10}(7.22 \times 10^{-5}) = 4.14 \][/tex]
7. Use the Henderson-Hasselbalch Equation:
[tex]\[ \text{pH} = \text{pK}_\text{a} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \][/tex]
Substitute the values:
[tex]\[ \text{pH} = 4.14 + \log_{10} \left( \frac{0.0853}{0.0199} \right) \][/tex]
8. Calculate the pH:
[tex]\[ \log_{10} \left( \frac{0.0853}{0.0199} \right) = \log_{10}(4.29) = 0.633 \][/tex]
[tex]\[ \text{pH} = 4.14 + 0.633 = 4.773 \][/tex]
Thus, the pH of the resulting buffer is [tex]\(\boxed{4.77}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.