At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the type of triangle given side lengths 10, 11, and 15, let's go through the mathematical process step by step.
Firstly, label the sides of the triangle:
- [tex]\( a = 10 \)[/tex]
- [tex]\( b = 11 \)[/tex]
- [tex]\( c = 15 \)[/tex]
Typically, in a triangle's analysis, the longest side (15, in this case) is considered the hypotenuse if the triangle is a right triangle.
Step 1: Verify whether it's an acute, right, or obtuse triangle using the Pythagorean theorem:
- For a right triangle: [tex]\( a^2 + b^2 = c^2 \)[/tex]
- For an acute triangle: [tex]\( a^2 + b^2 > c^2 \)[/tex]
- For an obtuse triangle: [tex]\( a^2 + b^2 < c^2 \)[/tex]
Step 2: Calculate the squares of the side lengths:
- [tex]\( 10^2 = 100 \)[/tex]
- [tex]\( 11^2 = 121 \)[/tex]
- [tex]\( 15^2 = 225 \)[/tex]
Step 3: Compare sums of squares:
- Calculate [tex]\( a^2 + b^2 = 100 + 121 = 221 \)[/tex]
- Compare it with [tex]\( c^2 \)[/tex]:
- [tex]\( 221 \)[/tex] is less than [tex]\( 225 \)[/tex]
Since [tex]\( a^2 + b^2 < c^2 \)[/tex] (221 < 225), the triangle is an obtuse triangle.
Step 4: Review Ella's procedure and conclusion:
- Ella should have compared [tex]\( 100 + 121 \)[/tex] with [tex]\( 225 \)[/tex], but she incorrectly added 11 to 15, leading to a false result.
- She concluded that [tex]\( 346 > 100 \)[/tex], which misled her to declare the triangle acute.
Therefore, the best summary of Ella's work is:
Ella's procedure is correct, but her conclusion is incorrect.
Firstly, label the sides of the triangle:
- [tex]\( a = 10 \)[/tex]
- [tex]\( b = 11 \)[/tex]
- [tex]\( c = 15 \)[/tex]
Typically, in a triangle's analysis, the longest side (15, in this case) is considered the hypotenuse if the triangle is a right triangle.
Step 1: Verify whether it's an acute, right, or obtuse triangle using the Pythagorean theorem:
- For a right triangle: [tex]\( a^2 + b^2 = c^2 \)[/tex]
- For an acute triangle: [tex]\( a^2 + b^2 > c^2 \)[/tex]
- For an obtuse triangle: [tex]\( a^2 + b^2 < c^2 \)[/tex]
Step 2: Calculate the squares of the side lengths:
- [tex]\( 10^2 = 100 \)[/tex]
- [tex]\( 11^2 = 121 \)[/tex]
- [tex]\( 15^2 = 225 \)[/tex]
Step 3: Compare sums of squares:
- Calculate [tex]\( a^2 + b^2 = 100 + 121 = 221 \)[/tex]
- Compare it with [tex]\( c^2 \)[/tex]:
- [tex]\( 221 \)[/tex] is less than [tex]\( 225 \)[/tex]
Since [tex]\( a^2 + b^2 < c^2 \)[/tex] (221 < 225), the triangle is an obtuse triangle.
Step 4: Review Ella's procedure and conclusion:
- Ella should have compared [tex]\( 100 + 121 \)[/tex] with [tex]\( 225 \)[/tex], but she incorrectly added 11 to 15, leading to a false result.
- She concluded that [tex]\( 346 > 100 \)[/tex], which misled her to declare the triangle acute.
Therefore, the best summary of Ella's work is:
Ella's procedure is correct, but her conclusion is incorrect.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.