At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Evaluate the definite integral of the algebraic function. Use a graphing utility to verify your result.

[tex]\[ \int_0^5 (4t - 1)^2 \, dt \][/tex]


Sagot :

Sure, let's go through the steps to evaluate the definite integral [tex]\(\int_0^5(4t - 1)^2 \, dt\)[/tex].

### Step 1: Expand the Integrand
First, let’s expand the integrand [tex]\((4t - 1)^2\)[/tex]:
[tex]\[ (4t - 1)^2 = (4t - 1)(4t - 1) = 16t^2 - 8t + 1 \][/tex]

### Step 2: Set Up the Integral
Now, rewrite the integral with the expanded form:
[tex]\[ \int_0^5 (16t^2 - 8t + 1) \, dt \][/tex]

### Step 3: Integrate Term by Term
Next, we will integrate each term separately.
1. The integral of [tex]\(16t^2\)[/tex]:
[tex]\[ \int 16t^2 \, dt = 16 \cdot \frac{t^3}{3} = \frac{16}{3}t^3 \][/tex]

2. The integral of [tex]\(-8t\)[/tex]:
[tex]\[ \int -8t \, dt = -8 \cdot \frac{t^2}{2} = -4t^2 \][/tex]

3. The integral of [tex]\(1\)[/tex]:
[tex]\[ \int 1 \, dt = t \][/tex]

### Step 4: Combine the Integrals
Now, combine these results:
[tex]\[ \int_0^5 (16t^2 - 8t + 1) \, dt = \left[ \frac{16}{3} t^3 - 4t^2 + t \right]_0^5 \][/tex]

### Step 5: Evaluate the Definite Integral
Now evaluate the antiderivative from [tex]\(0\)[/tex] to [tex]\(5\)[/tex].

First, plug in the upper limit [tex]\(t = 5\)[/tex]:
[tex]\[ \left( \frac{16}{3} \cdot 5^3 - 4 \cdot 5^2 + 5 \right) = \frac{16}{3} \cdot 125 - 4 \cdot 25 + 5 = \frac{2000}{3} - 100 + 5 \][/tex]

Simplify:
[tex]\[ \frac{2000}{3} - 95 = \frac{2000}{3} - \frac{285}{3} = \frac{2000 - 285}{3} = \frac{1715}{3} \][/tex]

Next, plug in the lower limit [tex]\(t = 0\)[/tex]:
[tex]\[ \left( \frac{16}{3} \cdot 0^3 - 4 \cdot 0^2 + 0 \right) = 0 \][/tex]

Subtract the results:
[tex]\[ \frac{1715}{3} - 0 = \frac{1715}{3} \][/tex]

### Final Answer
Thus, the value of the definite integral is:
[tex]\[ \boxed{\frac{1715}{3}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.