Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Find the area of the region bounded by the graphs of the equations:

[tex]\[ y = 7 + \sqrt[3]{x}, \quad x = 0, \quad x = 8, \quad y = 0 \][/tex]


Sagot :

To find the area of the region bounded by the graphs of the equations
[tex]\[ y = 7 + \sqrt[3]{x}, \quad x = 0, \quad x = 8, \quad y = 0 \][/tex]

we can follow these steps:

1. Understand the bounds and the function:
- The function [tex]\( y = 7 + \sqrt[3]{x} \)[/tex] represents a curve.
- The vertical lines [tex]\( x = 0 \)[/tex] and [tex]\( x = 8 \)[/tex] represent the lower and upper bounds of the integral.
- The line [tex]\( y = 0 \)[/tex] is the x-axis, which serves as the reference line for the area calculation.

2. Set up the integral:
To find the area under the curve [tex]\( y = 7 + \sqrt[3]{x} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 8 \)[/tex], we need to integrate the function with respect to [tex]\( x \)[/tex] from 0 to 8.

The integral for the area [tex]\( A \)[/tex] is:
[tex]\[ A = \int_{0}^{8} \left( 7 + \sqrt[3]{x} \right) \, dx \][/tex]

3. Compute the integral:
Break the integral into two parts:
[tex]\[ A = \int_{0}^{8} 7 \, dx + \int_{0}^{8} \sqrt[3]{x} \, dx \][/tex]

First, evaluate the integral of the constant term [tex]\( 7 \)[/tex]:
[tex]\[ \int_{0}^{8} 7 \, dx = 7 \left[ x \right]_{0}^{8} = 7 \left( 8 - 0 \right) = 56 \][/tex]

Next, evaluate the integral of [tex]\( \sqrt[3]{x} \)[/tex]:
Recall that [tex]\( \sqrt[3]{x} \)[/tex] can be written as [tex]\( x^{1/3} \)[/tex]:
[tex]\[ \int_{0}^{8} x^{1/3} \, dx \][/tex]
To integrate [tex]\( x^{1/3} \)[/tex], use the power rule for integration:
[tex]\[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
With [tex]\( n = 1/3 \)[/tex]:
[tex]\[ \int x^{1/3} \, dx = \frac{x^{(1/3)+1}}{(1/3)+1} = \frac{x^{4/3}}{4/3} = \frac{3}{4} x^{4/3} \][/tex]
Evaluate this from [tex]\( 0 \)[/tex] to [tex]\( 8 \)[/tex]:
[tex]\[ \left[ \frac{3}{4} x^{4/3} \right]_{0}^{8} = \frac{3}{4} \left( 8^{4/3} - 0^{4/3} \right) \][/tex]

Simplify [tex]\( 8^{4/3} \)[/tex]:
Recall that [tex]\( 8^{4/3} = (2^3)^{4/3} = 2^4 = 16 \)[/tex]:
[tex]\[ \frac{3}{4} \left( 16 - 0 \right) = \frac{3}{4} \times 16 = 12 \][/tex]

Combine the results of the integrals:
[tex]\[ A = 56 + 12 = 68 \][/tex]

Thus, the area of the region bounded by the given graphs is:
[tex]\[ \boxed{68} \][/tex]