Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the equation of the line passing through the point [tex]\((2, 3)\)[/tex] with a slope of [tex]\(-6\)[/tex], we use the slope-intercept form of a line, which is given by:
[tex]\[ y = mx + b \][/tex]
Here, [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] is the y-intercept.
Steps to find the equation:
1. Identify the slope ([tex]\(m\)[/tex]): The slope of the line is given as [tex]\(-6\)[/tex].
2. Identify a point on the line [tex]\((x_1, y_1)\)[/tex]: The point given is [tex]\((2, 3)\)[/tex].
3. Substitute the point and slope into the slope-intercept equation: We know the point [tex]\((x_1, y_1)\)[/tex] satisfies the equation of the line. Therefore, we can substitute [tex]\(x_1 = 2\)[/tex], [tex]\(y_1 = 3\)[/tex], and [tex]\(m = -6\)[/tex] into the equation to find [tex]\(b\)[/tex], the y-intercept.
[tex]\[ y_1 = mx_1 + b \][/tex]
[tex]\[ 3 = -6(2) + b \][/tex]
[tex]\[ 3 = -12 + b \][/tex]
4. Solve for [tex]\(b\)[/tex] (the y-intercept):
[tex]\[ 3 = -12 + b \][/tex]
[tex]\[ b = 3 + 12 \][/tex]
[tex]\[ b = 15 \][/tex]
5. Write the equation: Now that we have the slope ([tex]\(m\)[/tex]) and the y-intercept ([tex]\(b\)[/tex]), we can write the equation of the line:
[tex]\[ y = mx + b \][/tex]
[tex]\[ y = -6x + 15 \][/tex]
Thus, the equation in slope-intercept form for the line that passes through the point [tex]\((2, 3)\)[/tex] and has a slope of [tex]\(-6\)[/tex] is:
[tex]\[ y = -6x + 15 \][/tex]
[tex]\[ y = mx + b \][/tex]
Here, [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] is the y-intercept.
Steps to find the equation:
1. Identify the slope ([tex]\(m\)[/tex]): The slope of the line is given as [tex]\(-6\)[/tex].
2. Identify a point on the line [tex]\((x_1, y_1)\)[/tex]: The point given is [tex]\((2, 3)\)[/tex].
3. Substitute the point and slope into the slope-intercept equation: We know the point [tex]\((x_1, y_1)\)[/tex] satisfies the equation of the line. Therefore, we can substitute [tex]\(x_1 = 2\)[/tex], [tex]\(y_1 = 3\)[/tex], and [tex]\(m = -6\)[/tex] into the equation to find [tex]\(b\)[/tex], the y-intercept.
[tex]\[ y_1 = mx_1 + b \][/tex]
[tex]\[ 3 = -6(2) + b \][/tex]
[tex]\[ 3 = -12 + b \][/tex]
4. Solve for [tex]\(b\)[/tex] (the y-intercept):
[tex]\[ 3 = -12 + b \][/tex]
[tex]\[ b = 3 + 12 \][/tex]
[tex]\[ b = 15 \][/tex]
5. Write the equation: Now that we have the slope ([tex]\(m\)[/tex]) and the y-intercept ([tex]\(b\)[/tex]), we can write the equation of the line:
[tex]\[ y = mx + b \][/tex]
[tex]\[ y = -6x + 15 \][/tex]
Thus, the equation in slope-intercept form for the line that passes through the point [tex]\((2, 3)\)[/tex] and has a slope of [tex]\(-6\)[/tex] is:
[tex]\[ y = -6x + 15 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.